P re li mi n a r y Da t a S h e e t , D S 1 . 2 , J a n u a r y 1 4 , 20 0 1 ABMP ATM Buffer Manager ABMP 2.1 DATACOM N e v e r s t o p t h i n k i n g . Edition 2001-14-01 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 Munchen, Germany (c) Infineon Technologies AG 1/14/01. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Y P re li mi n a r y Da t a S h e e t , D S 1 . 2 , J a n u a r y 1 4 , 20 0 1 R ABMP ATM Buffer Manager P R E LI M IN A ABMP 2.1 DATACOM N e v e r s t o p t h i n k i n g . * ABMP PRELIMINARY Revision History: 2001-14-01 Previous Version: DS 1.1, 2000-03-10 Page DS 1.2 Subjects (major changes since last revision) From Data Sheet version 1.1 to 1.2, recognized typing errors have been removed. For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com Disclaimer: This Preliminary Document describes a product under development by Infineon Technologies AG (`Infineon'). Infineon reserves the right to change features and characteristics of the product or discontinue this product without notice. None of the information contained in this document constitutes an express or implied assurance of availability or functionality. Please contact Infineon for latest information on the product. Prel. ABMP Data Sheet PRELIMINARY 1 1.1 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.2 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Queueing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scheduling Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supervision Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 20 20 20 20 21 21 22 23 2 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 2.3.10 2.3.11 2.3.12 2.3.13 2.3.14 2.3.15 2.3.16 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Diagram with Functional Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Common System Clock Supply (6 pins) . . . . . . . . . . . . . . . . . . . . . . . . Utopia Receive Interface Upstream (Master/Slave) (32 pins) . . . . . . . . Utopia Transmit Interface Downstream (Master/Slave) (32 pins) . . . . . Utopia Receive Interface Downstream (Master/Slave) (32 pins) . . . . . . Utopia Transmit Interface Upstream (Master/Slave) (32 pins) . . . . . . . Microprocessor Interface (32 pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Storage RAM Upstream (50 pins) . . . . . . . . . . . . . . . . . . . . . . . . . Cell Storage RAM Downstream (50 pins) . . . . . . . . . . . . . . . . . . . . . . . Common Up- and Downstream Cell Pointer RAM (42 pins) . . . . . . . . . JTAG Boundary Scan (5 pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Interface (5 pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QCI Interface (3 pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test (1 pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Production Test (1 pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply (74 VSS , 32 VDD33 and 14 VDD18 pins) . . . . . . . . . . . . . . . . Un-Connected (13 pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24 25 26 26 27 29 30 31 32 35 36 39 40 41 41 41 41 41 42 3 3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.7.1 3.2.7.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Handler (Upstream/Downstream) . . . . . . . . . . . . . . . . . . . . . . . . . . Queue Manager and Scheduler Block (Overview) . . . . . . . . . . . . . . . . Enhanced Rate Control (ERC) Unit (Overview) . . . . . . . . . . . . . . . . . . . AAL5 Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Address Reduction Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Queue Congestion Indication Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clocking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clocking System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DPLL Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 43 46 46 46 46 47 48 54 54 55 55 Preliminary Data Sheet 5 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY 3.2.7.3 3.2.7.4 3.2.8 3.3 3.3.1 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 3.4.7.1 3.4.7.2 3.4.8 3.4.9 3.4.9.1 3.4.9.2 3.5 3.5.1 3.5.2 3.5.3 3.5.3.1 3.5.3.2 3.5.4 3.5.5 3.5.6 3.6 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.6.6 3.6.7 3.6.8 3.6.9 3.6.10 3.6.10.1 3.6.10.2 3.6.10.3 3.6.10.4 Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LCI Translation in Mini-Switch Configurations . . . . . . . . . . . . . . . . . . . . Detailed Queue Manager and Scheduler Block Description . . . . . . . . . . . The Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scheduler Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quality of Service Class Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EPD/PPD Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Threshold Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Statistical Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supervision Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Header Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell Queue Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DBA Threshold Indication Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . VC-Merge and Dummy Queue Description . . . . . . . . . . . . . . . . . . . . . . VC-Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dummy Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detailed ERC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ERC Unit Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ERC Unit Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Explicit Rate Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rate Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Other Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reactive Switch Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS/VD Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ERC Mailbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LCI: Local Connection Identifier Table . . . . . . . . . . . . . . . . . . . . . . . . . . QCT: Queue Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TCT: Traffic Class Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QPT: Queue Parameter Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SOT: Scheduler Occupancy Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . SCTI: Scheduler Configuration Table (Integer) . . . . . . . . . . . . . . . . . . . SCTF: Scheduler Configuration Table (Fractional) . . . . . . . . . . . . . . . . MGT: Merge Group Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT: ABR/VBR Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . AVT Context RAM Organization and Addressing . . . . . . . . . . . . . . . AVT Context RAM Section for ABR-VS/VD Support . . . . . . . . . . . . . AVT Context RAM Section for ABR-ER Support . . . . . . . . . . . . . . . . AVT Context RAM Section for VBR Shaping Support . . . . . . . . . . . . Preliminary Data Sheet 6 56 57 57 58 61 63 63 67 70 72 72 76 76 76 76 76 77 77 77 78 78 79 81 81 82 85 85 88 89 89 91 91 91 91 91 91 92 92 93 93 94 95 96 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY 3.6.10.5 3.6.11 Common AVT CONFIG Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 QCIT: Congestion Indication Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.9.1 4.2.9.2 4.2.9.3 4.2.9.4 4.2.9.5 4.2.9.6 4.2.9.7 4.2.9.8 4.3 4.4 4.5 4.6 Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic Device Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic Traffic Management Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . Setup of Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABM Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bandwidth Reservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bandwidth Reservation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming of the Peak Rate Limiter / PCR Shaper . . . . . . . . . . . . Scheduler Output Rate Calculation Example . . . . . . . . . . . . . . . . . . . Empty Cell Rate Calculation Example . . . . . . . . . . . . . . . . . . . . . . . . . Traffic Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CBR Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VBR-rt Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VBR-nrt Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABR Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UBR+ Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GFR Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UBR Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generic Service Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic Enhanced Rate Control Initialization . . . . . . . . . . . . . . . . . . . . . . . Connection Tear-Down Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AAL5 Packet Insertion/Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 100 100 104 105 106 107 108 109 110 111 112 112 112 112 112 113 113 113 113 113 114 114 114 5 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.6.1 5.1.6.2 5.1.6.3 5.1.6.4 5.1.6.5 5.2 5.2.1 5.2.2 Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UTOPIA L2 Interfaces (PHY-side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . URXU: UTOPIA Receive Upstream (PHY side) . . . . . . . . . . . . . . . . . UTXD: UTOPIA Transmit Downstream (PHY side) . . . . . . . . . . . . . . . UTOPIA Port/Address Mapping (PHY side) . . . . . . . . . . . . . . . . . . . . Functional UTOPIA Timing (PHY side) . . . . . . . . . . . . . . . . . . . . . . . . UTOPIA Master Mode Polling Scheme (PHY side) . . . . . . . . . . . . . . . UTOPIA Cell Format (PHY side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UTOPIA Level 2 Standard Cell Formats . . . . . . . . . . . . . . . . . . . . . LCI Mapping Mode: VPI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LCI Mapping Mode: VCI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . LCI Mapping Mode: Infineon Mode . . . . . . . . . . . . . . . . . . . . . . . . . LCI Mapping Mode: Address Reduction Mode . . . . . . . . . . . . . . . . UTOPIA L2 Interface (Backplane-side) . . . . . . . . . . . . . . . . . . . . . . . . . . URXD: UTOPIA Receive Downstream (Backplane side) . . . . . . . . . . UTXU: UTOPIA Transmit Upstream (Backplane side) . . . . . . . . . . . . 115 115 115 117 119 120 121 122 122 123 123 124 124 126 126 126 Preliminary Data Sheet 7 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY 5.2.3 5.2.4 5.2.5 5.2.6 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.4 5.4.1 5.4.2 5.4.3 5.5 5.5.1 5.5.2 5.6 5.7 5.8 5.8.1 5.8.2 UTOPIA Port/Address Mapping (Backplane side) . . . . . . . . . . . . . . . . Functional UTOPIA Timing (Backplane side) . . . . . . . . . . . . . . . . . . . UTOPIA Master Mode Polling Scheme (Backplane side) . . . . . . . . . . UTOPIA Cell Format (Backplane side) . . . . . . . . . . . . . . . . . . . . . . . . MPI: Microprocessor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intel Style Write Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intel Style Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motorola style Write Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intel Style Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External RAM Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RAM Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CSR: Cell Storage SDRAM Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . CPR: Cell Pointer SSRAM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . SPI: Serial Pheripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QCI: Queue Congestion Indication Interface . . . . . . . . . . . . . . . . . . . . . . Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock and Reset Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Memory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7 7.1 7.2 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Overview of the ABM Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Detailed Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 9 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 10 10.1 10.2 Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Backpressure Controlled Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 AAL5-Processed Cell Insertion/Extraction . . . . . . . . . . . . . . . . . . . . . . . . 343 11 11.1 11.2 11.3 11.4 11.4.1 11.4.1.1 11.4.1.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microprocessor Interface Timing Intel Mode . . . . . . . . . . . . . . . . . . . . Microprocessor Write Cycle Timing (Intel) . . . . . . . . . . . . . . . . . . . . Microprocessor Read Cycle Timing (Intel) . . . . . . . . . . . . . . . . . . . . Preliminary Data Sheet 8 126 126 126 127 127 127 128 128 129 129 130 130 133 134 134 134 135 135 137 137 137 137 344 344 344 345 347 349 349 350 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY 11.4.2 Microprocessor Interface Timing Motorola Mode . . . . . . . . . . . . . . . . 11.4.2.1 Microprocessor Write Cycle Timing (Motorola) . . . . . . . . . . . . . . . . 11.4.2.2 Microprocessor Read Cycle Timing (Motorola) . . . . . . . . . . . . . . . . 11.4.3 UTOPIA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.4 CPR SSRAM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.5 CSR SDRAM Interface(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.6 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.7 Boundary-Scan Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.8 SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.9 Queue Congestion Interface (QCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5 Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6 Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 351 353 355 360 361 363 364 366 367 368 368 12 Testmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 13 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 14 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 15 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 Preliminary Data Sheet 9 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY Figure 1-1 Figure 1-2 Figure 2-1 Figure 2-2 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 3-5 Figure 3-6 Figure 3-7 Figure 3-8 Figure 3-9 Figure 3-10 Figure 3-11 Figure 3-12 Figure 3-13 Figure 3-14 Figure 3-15 Figure 3-16 Figure 3-17 Figure 3-18 Figure 3-19 Figure 3-20 Figure 3-21 Figure 3-22 Figure 3-23 Figure 3-24 Figure 3-25 Figure 3-26 Figure 3-27 Figure 3-28 Figure 3-29 Figure 3-30 Figure 3-31 Figure 3-32 Figure 3-33 Figure 3-34 Figure 3-35 Figure 3-36 Figure 3-37 Figure 4-1 Figure 4-2 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 General System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Pin Configuration (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Pin Configuration (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Sub-System Integration Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Logical Block Diagram (One Direction) . . . . . . . . . . . . . . . . . . . . . . . . 45 LCI Building Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 LCI Building Patterns (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 LCI Building Patterns (VPI only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 LCI Building Patterns (VPI only) (cont.) . . . . . . . . . . . . . . . . . . . . . . . . 53 Clocking System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 DPLL Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Reset System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ABMP in Bi-directional Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 ABMP in Uni-directional Mode Using both Cores . . . . . . . . . . . . . . . . 60 ABMP in Uni-directional Mode Using one Core . . . . . . . . . . . . . . . . . . 60 Connection Identifiers in Mini-Switch Configuration. . . . . . . . . . . . . . . 61 Cell Acceptance and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Scheduler Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Scheduler Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Data Traffic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Scheduler Behavior Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Scheduler Usage at Switch Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Scheduler Usage at Switch Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Queue Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Example of Threshold Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 71 ERC Unit Sub-System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Example Network Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 ABR Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Example Behavior of an Explicit Rate controlled ABR Connection . . . 82 RM and User Cell Sequence: General Case . . . . . . . . . . . . . . . . . . . . 84 RM and User Cell Sequence: worst Case . . . . . . . . . . . . . . . . . . . . . . 84 Capacity Usage of ABR VCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 VS/VD Cell Streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Distribution of VS/VD Function in a Switch . . . . . . . . . . . . . . . . . . . . . 88 Table Access Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Context RAM Addressing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 AVT Context Table: ABR-VS/VD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 AVT Context Table: ABR-ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 AVT Context Table: VBR Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Parameters for Connection Setup (Bitfield width indicated). . . . . . . . 101 ABMP Application Example: DSLAM . . . . . . . . . . . . . . . . . . . . . . . . . 105 Preliminary Data Sheet 10 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY Figure 5-1 Figure 5-2 Figure 5-3 Figure 5-4 Figure 5-5 Figure 5-6 Figure 5-7 Figure 5-8 Figure 5-9 Figure 5-10 Figure 5-11 Figure 5-12 Figure 5-13 Figure 7-1 Figure 11-1 Figure 11-2 Figure 11-3 Figure 11-4 Figure 11-5 Figure 11-6 Figure 11-7 Figure 11-8 Figure 11-9 Figure 11-10 Figure 11-11 Figure 11-12 Figure 11-13 Figure 12-1 UTOPIA Receive Upstream Master Mode . . . . . . . . . . . . . . . . . . . . . UTOPIA Receive Upstream Slave Mode . . . . . . . . . . . . . . . . . . . . . . UTOPIA Transmit Downstream Master Mode . . . . . . . . . . . . . . . . . . UTOPIA Transmit Downstream Slave Mode . . . . . . . . . . . . . . . . . . . Intel Style Write Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intel Style Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motorola Style Write Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motorola Style Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CSR Interface and Connection Example . . . . . . . . . . . . . . . . . . . . . . CPR Interface(s) and Connection Example . . . . . . . . . . . . . . . . . . . . SPI Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Write Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table Access Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Output Waveform for AC Measurements . . . . . . . . . . . . . . . . . Microprocessor Interface Write Cycle Timing (Intel) . . . . . . . . . . . . . Microprocessor Interface Read Cycle Timing (Intel) . . . . . . . . . . . . . Microprocessor Interface Write Cycle Timing (Motorola) . . . . . . . . . . Microprocessor Interface Read Cycle Timing (Motorola). . . . . . . . . . Setup and Hold Time Definition (Single- and Multi-PHY). . . . . . . . . . Tristate Timing (Multi-PHY, Multiple Devices Only) . . . . . . . . . . . . . . SSRAM Interface Generic Timing Diagram . . . . . . . . . . . . . . . . . . . . Generic SDRAM Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary-Scan Test Interface Timing Diagram . . . . . . . . . . . . . . . . . SPI Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QCI Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram of Test Access Port and Boundary Scan Unit . . . . . . Preliminary Data Sheet 11 115 116 117 118 127 128 128 129 133 134 135 135 136 140 347 349 350 351 353 355 356 360 361 363 364 366 367 369 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY Table 2-1 Table 3-1 Table 3-2 Table 3-3 Table 3-4 Table 3-5 Table 3-6 Table 3-7 Table 4-1 Table 4-2 Table 5-1 Table 5-2 Table 5-3 Table 5-4 Table 5-5 Table 5-6 Table 5-7 Table 5-8 Table 5-9 Table 5-10 Table 5-11 Table 5-12 Table 7-1 Table 7-2 Table 7-3 Table 7-5 Table 7-4 Table 7-7 Table 7-6 Table 7-9 Table 7-8 Table 7-10 Table 7-11 Table 7-12 Table 7-13 Table 7-14 Table 7-15 Table 7-17 Table 7-16 Table 7-18 Table 7-19 Table 7-20 Table 7-21 Ball Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Guaranteed Rates for each Traffic Class. . . . . . . . . . . . . . . . . . . . . . . 67 Threshold Overview Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 ABR Support of ABM v1.1 vs. ABMP. . . . . . . . . . . . . . . . . . . . . . . . . . 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 In-rate and out-of-rate Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Bandwidth Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Config(5:0) Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Number of Possible Connections per PHY . . . . . . . . . . . . . . . . . . . . 108 Minimum Peak Rate Shaper Values . . . . . . . . . . . . . . . . . . . . . . . . . 109 Port/Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Port Polling Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Standardized UTOPIA Level 2 Cell Format (16-bit) . . . . . . . . . . . . . . 122 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells . . . . 122 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells . . . . 123 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells . . . . 123 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells . . . . 124 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells . . . . 124 External RAM Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Cell Pointer RAM Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 SDRAM Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 SSRAM and SDRAM Type Examples . . . . . . . . . . . . . . . . . . . . . . . . 132 Color Convention for Internal Table Field Illustration . . . . . . . . . . . . . 141 ABM Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 External RAM Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 WAR Register Mapping for DTC Table access . . . . . . . . . . . . . . . . 196 Registers DTC Upstream/Downstream Table Access . . . . . . . . . . . . 196 WAR Register Mapping for LCI Table Access . . . . . . . . . . . . . . . . . 199 Registers for LCI Table Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 WAR Register Mapping for TCT Table Access . . . . . . . . . . . . . . . . 203 Registers for TCT Table Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Registers for Queue Configuration Table Access . . . . . . . . . . . . . . . 219 WAR Register Mapping for LCI Table Access . . . . . . . . . . . . . . . . . 220 Registers for SOT Table Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 WAR Register Mapping for SOT Table Access . . . . . . . . . . . . . . . . 231 Registers for MGT Table Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 WAR Register Mapping for MGT Table Access . . . . . . . . . . . . . . . . 236 WAR Register Mapping for DTC Table access . . . . . . . . . . . . . . . . 243 Registers QCIT Table Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Registers for QPT1 Upstream Table Access . . . . . . . . . . . . . . . . . . . 253 Registers for QPT1 Downstream Table Access . . . . . . . . . . . . . . . . 253 WAR Register Mapping for QPT Table Access . . . . . . . . . . . . . . . . 254 Registers for QPT2 Upstream Table Access . . . . . . . . . . . . . . . . . . . 257 Preliminary Data Sheet 12 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY Table 7-22 Table 7-23 Table 7-24 Table 7-25 Table 7-26 Table 7-27 Table 7-28 Table 7-29 Table 7-30 Table 11-1 Table 11-2 Table 11-3 Table 11-4 Table 11-5 Table 11-6 Table 11-7 Table 11-8 Table 11-9 Table 11-10 Table 11-11 Table 11-12 Table 11-13 Table 11-14 Table 11-15 Table 11-16 Table 11-17 Table 11-18 Table 11-20 Table 11-19 Registers for QPT2 Downstream Table Access . . . . . . . . . . . . . . . . WAR Register Mapping for QPT Table Access . . . . . . . . . . . . . . . . Registers SCTI Upstream Table Access . . . . . . . . . . . . . . . . . . . . . . Registers SCTI Downstream Table Access . . . . . . . . . . . . . . . . . . . . Registers SCTF Upstream Table Access . . . . . . . . . . . . . . . . . . . . . Registers SCTF Downstream Table Access . . . . . . . . . . . . . . . . . . . WAR Register Mapping for SCTFU/SCTFD Table access . . . . . . . Registers for AVT Table Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . WAR Register Mapping for AVT Table Access . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microprocessor Interface Write Cycle Timing (Intel) . . . . . . . . . . . . . Microprocessor Interface Read Cycle Timing (Intel) . . . . . . . . . . . . . Microprocessor Interface Write Cycle Timing (Motorola) . . . . . . . . . . Microprocessor Interface Read Cycle Timing (Motorola). . . . . . . . . . Transmit Timing (16-Bit Data Bus, 50 MHz at Cell Interface, Single PHY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Timing (16-Bit Data Bus, 50 MHz at Cell Interface, Single PHY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit Timing (16-Bit Data Bus, 50 MHz at Cell Interface, Multi-PHY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Timing (16-Bit Data Bus, 50 MHz at Cell Interface, Multi-PHY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSRAM Interface AC Timing Characteristics . . . . . . . . . . . . . . . . . . SDRAM Interface AC Timing Characteristics . . . . . . . . . . . . . . . . . . Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary-Scan Test Interface AC Timing Characteristics . . . . . . . . SPI Interface AC Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . QCI Interface AC Timing Characteristics . . . . . . . . . . . . . . . . . . . . . Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preliminary Data Sheet 13 257 258 262 262 274 274 275 285 286 344 344 345 348 349 350 351 353 356 357 358 359 360 361 363 364 366 367 368 368 2001-14-01 Prel. ABMP Data Sheet List of Registers Register 1 Register 2 Register 3 Register 4 Register 5 Register 6 Register 7 Register 8 Register 9 Register 10 Register 11 Register 12 Register 13 Register 14 Register 15 Register 16 Register 17 Register 18 Register 19 Register 20 Register 21 Register 22 Register 23 Register 24 Register 25 Register 26 Register 27 Register 28 Register 29 Register 30 Register 31 Register 32 Register 33 Register 34 Register 35 Register 36 Register 37 Register 38 Register 39 Register 40 Register 41 Register 42 Register 43 Register 44 Register 45 Register 46 Register 47 Register 48 Register 49 Register 50 Register 51 Page UCFTST/DCFTST............................................................................... URCFG/DRCFG ................................................................................. UA5TXHD0/DA5TXHD0 ..................................................................... UA5TXHD1/DA5TXHD1 ..................................................................... UA5TXDAT0/DA5TXDAT0 ................................................................. UA5TXDAT1/DA5TXDAT1 ................................................................. UA5TXTR/DA5TXTR .......................................................................... UA5TXCMD/DA5TXCMD ................................................................... UA5RXHD0/DA5RXHD0..................................................................... UA5RXHD1/DA5RXHD1..................................................................... UA5RXDAT0/DA5RXDAT0................................................................. UA5RXDAT1/DA5RXDAT1................................................................. UA5SARS/DA5SARS ......................................................................... UBOC/DBOC ...................................................................................... UNGBOC/DNGBOC ........................................................................... UBMTH/DBMTH ................................................................................. UMAC/DMAC ...................................................................................... UMIC/DMIC......................................................................................... CLP1DIS ............................................................................................. CONFIG .............................................................................................. UUBPTH0 ........................................................................................... UUBPTH1 ........................................................................................... UUBPTH2 ........................................................................................... UUBPTH3 ........................................................................................... UBPEI ................................................................................................. DUBPTH0 ........................................................................................... DUBPTH1 ........................................................................................... DUBPTH2 ........................................................................................... DUBPTH3 ........................................................................................... DQCIC ................................................................................................ DSBT1 ................................................................................................ DSBT2 ................................................................................................ DSBT3 ................................................................................................ DSBT4 ................................................................................................ DTCT .................................................................................................. LCI0 .................................................................................................... LCI1 .................................................................................................... LCI2 .................................................................................................... TCT0 ................................................................................................... TCT1 ................................................................................................... TCT2 ................................................................................................... TCT3 ................................................................................................... QCT0 .................................................................................................. QCT1 .................................................................................................. QCT2 .................................................................................................. QCT3 .................................................................................................. QCT4 .................................................................................................. QCT5 .................................................................................................. QCT6 .................................................................................................. SOT0................................................................................................... SOT1................................................................................................... Preliminary Data Sheet 14 152 154 155 156 158 159 160 161 162 164 165 166 167 170 171 172 174 175 176 177 178 179 180 181 182 183 184 185 186 187 189 191 192 194 197 200 201 202 206 208 211 213 220 221 224 226 228 228 229 231 232 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY Register 52 Register 53 Register 54 Register 55 Register 56 Register 57 Register 58 Register 59 Register 60 Register 61 Register 62 Register 63 Register 64 Register 65 Register 66 Register 67 Register 68 Register 69 Register 70 Register 71 Register 72 Register 73 Register 74 Register 75 Register 76 Register 77 Register 78 Register 79 Register 80 Register 81 Register 82 Register 83 Register 84 Register 85 Register 86 Register 87 Register 88 Register 89 Register 90 Register 91 Register 92 Register 93 Register 94 Register 95 Register 96 Register 97 Register 98 Register 99 Register 100 Register 101 Register 102 Register 103 SOT2................................................................................................... 232 SOT3................................................................................................... 233 SOT4................................................................................................... 234 MGT0 .................................................................................................. 236 MGT1 .................................................................................................. 237 MGT2 .................................................................................................. 237 MASK0/MASK1................................................................................... 238 MASK2/MASK3................................................................................... 239 MASK4/MASK5................................................................................... 240 MASK6 ................................................................................................ 241 QCIT ................................................................................................... 244 UCDV/DCDV....................................................................................... 245 UQPTM0/DQPTM0 ............................................................................. 246 UQPTM1/DQPTM1 ............................................................................. 247 UQPTM2/DQPTM2 ............................................................................. 248 UQPTM3/DQPTM3 ............................................................................. 249 UQPTM4/DQPTM4 ............................................................................. 250 UQPTM5/DQPTM5 ............................................................................. 251 USCONF/DSCONF............................................................................. 252 UQPT1T0/DQPT1T0........................................................................... 255 UQPT1T1/DQPT1T1........................................................................... 256 UQPT2T0/DQPT2T0........................................................................... 259 UQPT2T1/DQPT2T1........................................................................... 259 UQPT2T2/DQPT2T2........................................................................... 260 UQPT2T3/DQPT2T3........................................................................... 261 USADR/DSADR.................................................................................. 263 USCTI/DSCTI ..................................................................................... 264 UECRI/DECRI..................................................................................... 267 UECRF/DECRF .................................................................................. 270 UCRTQ/DCRTQ ................................................................................. 272 USCTFM/DSCTFM ............................................................................. 272 USCTFT/DSCTFT............................................................................... 275 USCEN0/DSCEN0 .............................................................................. 277 USCEN1/DSCEN1 .............................................................................. 277 USCEN2/DSCEN2 .............................................................................. 278 USCEN3/DSCEN3 .............................................................................. 279 USCEN4/DSCEN4 .............................................................................. 279 USCEN5/DSCEN5 .............................................................................. 280 USCEN6/DSCEN6 .............................................................................. 281 USCEN7/DSCEN7 .............................................................................. 281 UCRTRI/DCRTRI ................................................................................ 282 UCRTRF/DCRTRF ............................................................................. 283 ERCT0 ................................................................................................ 286 ERCT1 ................................................................................................ 287 ERCM0 ............................................................................................... 288 ERCM1 ............................................................................................... 289 ERCMB0 ............................................................................................. 290 ERCMB1 ............................................................................................. 291 ERCMB2 ............................................................................................. 292 ERCCONF0 ........................................................................................ 293 ERCCONF1 ........................................................................................ 294 PLL1CONF ......................................................................................... 296 Preliminary Data Sheet 15 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY Register 104 Register 105 Register 106 Register 107 Register 108 Register 109 Register 110 Register 111 Register 112 Register 113 Register 114 Register 115 Register 116 Register 117 Register 118 Register 119 Register 120 Register 121 Register 122 Register 123 Register 124 Register 125 Register 126 Register 127 Register 128 Register 129 Register 130 Register 131 Register 132 Register 133 Register 134 Register 135 Register 136 Register 137 Register 138 PLL2CONF ......................................................................................... 298 PLLTST ............................................................................................... 300 ERCRAC............................................................................................. 301 ERCRAM ............................................................................................ 303 VERL................................................................................................... 304 VERH .................................................................................................. 304 ISRU ................................................................................................... 305 ISRD ................................................................................................... 308 ISRC ................................................................................................... 311 IMRU ................................................................................................... 312 IMRD ................................................................................................... 313 IMRC ................................................................................................... 314 ISRDBA............................................................................................... 315 IMRDBA .............................................................................................. 316 MAR .................................................................................................... 317 WAR.................................................................................................... 319 STATUS.............................................................................................. 320 MODE1 ............................................................................................... 321 MODE2 ............................................................................................... 325 UTRXCFG........................................................................................... 327 UUTRXP0 ........................................................................................... 329 UUTRXP1 ........................................................................................... 329 UUTRXP2 ........................................................................................... 330 DUTRXP0 ........................................................................................... 331 DUTRXP1 ........................................................................................... 331 DUTRXP2 ........................................................................................... 332 UUTTXCFG ........................................................................................ 333 DUTTXCFG ........................................................................................ 334 UUTTXP0............................................................................................ 336 UUTTXP1............................................................................................ 336 UUTTXP2............................................................................................ 337 DUTRXP0 ........................................................................................... 338 DUTTXP1............................................................................................ 338 DUTTXP2............................................................................................ 339 TEST................................................................................................... 340 Preliminary Data Sheet 16 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY Preface The purpose of this Preliminary Data Sheet is to provide comprehensive information about the ABMP device covering system level integration, hardware/board design and software driver aspects. Organization of this Document This Preliminary Data Sheet is divided into 13 chapters and two appendices. It is organized as follows: * Chapter 1, Overview Gives a general description of the product and its family, lists the key features, and presents some typical applications. * Chapter 2, Pin Descriptions Lists pin locations with associated signals, categorizes signals according to function, and describes signals. * Chapter 3, Functional Description Gives a description of major function blocks, configuration tables and global device functions. * Chapter 4, Operational Description Describes basic initialization and operation procedures. * Chapter 5, Interface Description Gives a functional description of all interfaces. * Chapter 6, Memory Structure * Chapter 7, Register Description Lists all registers and tables with functional description. * Chapter 8, Programming * Chapter 9, Timing Diagrams * Chapter 10, Application Hints * Chapter 11, Electrical Characteristics Provides detailed information about electrical characteristics and interface timings. Preliminary Data Sheet 17 2001-14-01 Prel. ABMP Data Sheet PRELIMINARY * Chapter 12, Testmode * Chapter 13, Package Outlines Related Documentation * ITU-T Recommendation I.371 "Traffic Control and Congestion Control in B-ISDN" 2nd Release, March 1996 * ATMF "Traffic Management Specification 4.1", March 1999 * ATMF "UTOPIA Level 1 Specification Version 2.01", March 1994 * ATMF "UTOPIA Level 2 Specification Version 1", June 1995 Your Comments We welcome your comments on this document. We are continuously trying improving our documentation. Please send your remarks and suggestions by e-mail to sc.docu_comments@infineon.com Please provide in the subject of your e-mail: device name (ABMP), device part number (x), device version (x), and in the body of your e-mail: document type (Preliminary Data Sheet), issue date (2001-14-01) and document revision number (DS 1.2). Preliminary Data Sheet 18 2001-14-01 PRELIMINARY ATM Buffer Manager ABMP ABMP 2.1 1 Overview The ABM PXB 4330 Traffic Management Device is well accepted in a variety of applications where extensive ATM Traffic Management capabilities are required in either distributed or centralized system architectures of Enterprise and CO Switches, DSLAMs and ATM Line Cards for Routers and Switches. The second generation ABMP targets the next generation of Multi-Service platforms with combined ATM cell and packet handling requirements. The new Enhanced Rate Control (ERC) unit provides a powerful mechanism to achieve maximum link utilization by rate adaptive schemes like ABR-ER, ABR-VS/VD and RSC. Optional per queue Dual Leaky Bucket scheduling completes the shaping functions with full VBR support. Special features are implemented to allow performance optimized interworking of ATM and higher layer traffic management and flow control schemes. * 1.1 * * * * * * * * * * * Features ATM Traffic Management processing up to STM-4/OC-12 equivalent bandwidth Throughput up to 688 Mbit/s, bi-directional Speed-up factor at switching fabric receive interface 1.27 Uni-directional mode with combined resources of both directions (optional) 256k cells buffer per direction (configurable in guaranteed and shared buffer) Up to 16384 connections arbitrary assignable to queues Up to 8192 queues per direction, individually assignable to schedulers and to service classes FIFO queuing within each queue Up to 128 schedulers per direction with programmable service rates, individually assignable to PHYs (up to 512 schedulers per direction by cascading four ABM chips) Up to 16 traffic classes with individually selectable thresholds for service classes Up to 48 PHYs (Ports per UTOPIA interface) Type Package ABMP BGA-456 Preliminary Data Sheet 19 2001-14-01 Prel. ABMP Data Sheet Overview PRELIMINARY * Traffic Classes: UBR, UBR+, CBR, VBR-rt, VBR-nrt, GFR, ABR (relative marking, ER, VS/VD, RSC), PHB (traffic class settings are not pre-defined; generic PHB characteristics can be configured) * Configurable cell address translation modi 1.1.1 * * * * * * * * * Common high-priority real-time bypass for both directions High-priority real-time bypass per scheduler Per-VC queueing for up to 8192 connections per direction Weighted fair queuing with 15,360 weight factors programmable for each queue Optional PCR shaping selectable for each queue with minimum rate 100 cells/s (63,488 programmable rates) Optional VBR shaping selectable for up to 2046 queues Guaranteed per queue buffer reservation Subset of cell acceptance thresholds with hysteresis evaluation EPD/PPD thresholds for GFR support 1.1.2 * * * * * * * * Queueing Functions Thresholds Cell acceptance based on threshold sets Threshold sets for individual queues, traffic classes, schedulers and global buffer PPD discard thresholds EPD discard thresholds CLP discard thresholds EFCI and CI/NI thresholds Head-of-line blocking free UTOPIA port backpressure thresholds Per queue congestion indication/avoidance thresholds 1.1.3 Scheduling Functions * Two stage scheduler units with 2 Round Robbin and 1 WFQ scheduler connected to a second stage priority scheduler * VC/VP merge function for up to 128 merge groups (arbitrary queues per merge group) * Dual-Leaky-Bucket shaping (queue associated function; allows shaping on aggregated connections, e.g. UBR bundles) 1.1.4 Interfaces * Two external SDRAM Interfaces for cell storage, one for upstream and one for downstream direction (up to 256k cell buffer per direction) * One common cell pointer SSRAM Interface Preliminary Data Sheet 20 2001-14-01 Prel. ABMP Data Sheet Overview PRELIMINARY * Multiport UTOPIA Level 2 Interface in up- and downstream direction according to The ATM Forum, UTOPIA Level 1 and 2 specifications [] * 4-cell FIFO buffer at UTOPIA receive interfaces for clock synchronization (Head-of-line blocking free) * 96-cell buffer logical queueing for up to 48 PHYs at UTOPIA transmit interfaces (Head-of-line blocking free) * 16-bit Microprocessor Interface, configurable as Intel or Motorola type (with AAL5 packet insertion/extraction support) * Queue Congestion Indication interface * Boundary Scan Interface according to JTAG [] 1.1.5 Supervision Functions * Internal pointer supervision * Cell header protection function 1.1.6 * * * * Technology Supply voltages 1.8V (core) and 3.3V (I/Os) Ball Grid Array BGA-456 package (Power BGA 35sqmm) Temperature range -40C to 85C Power dissipation 2.0 W (typical) Preliminary Data Sheet 21 2001-14-01 Prel. ABMP Data Sheet Overview PRELIMINARY 1.2 Logic Symbol * Cell Pointer RAM SSRAM Interface UTOPIA L2 Interface (PHY Side) Upstream Cell Storage RAM SDRAM Interface PXB 4330 ABMP UTOPIA L2 Interface (Backplane Side) 16 Bit uP Interface Bus Optional Code ROM Test/ JTAG/ Clocking IF Queue Congestion Indication Interface Figure 1-1 Downstream Cell Storage RAM SDRAM Interface Logic Symbol Preliminary Data Sheet 22 2001-14-01 Prel. ABMP Data Sheet Overview PRELIMINARY 1.3 Typical Applications Traffic Management on Line and Trunk cards for * * * * ATM Switches DSLAMs, DLCs Multi Service Access Switches 3G Wireless Infrastructure Switches * Figure 1-2 General System Integration Preliminary Data Sheet 23 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY 2 Pin Descriptions 2.1 Pin Diagram * Bottom View A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF 1 URX PRTYU URX CLKU URX DATU 0 URX DATU 2 URX DATU 4 URX DATU 8 URX DATU 12 VDD18 CPR ADR 18 CPR ADR 14 CPR ADR 10 CPR ADR 7 CPR ADR 2 CPR DAT 18 CPR DAT 13 CPR DAT 10 CPR DAT 5 CPR DAT 2 UTX DATD 15 UTX DATD 11 NC UTX DATD 4 UTX DATD 1 NC UTX CLKD UTX CLAV2 1 2 URX ENBU 1 URX ENBU 2 URX DATU 1 URX DATU 3 URX DATU 5 URX DATU 9 URX DATU 13 CPR OE CPR ADR 17 CPR ADR 13 CPR ADR 9 CPR ADR 6 CPR ADR 1 CPR DAT 19 CPR DAT 14 CPR DAT 11 CPR DAT 6 NC VDD18 UTX DATD 12 UTX DATD 8 UTX DATD 5 UTX DATD 2 UTX DATD 0 UTX PRTYD UTX CLAV1 2 3 URX ENBU 3 URX ADRU 0 URX ENBU 0 NC URX DATU 6 URX DATU 10 URX DATU 14 CPR GW CPR ADR 16 CPR ADR 12 CPR ADR 8 CPR ADR 5 CPR ADR 0 VDD18 CPR DAT 15 CPR DAT 12 CPR DAT 7 CPR DAT 3 CPR DAT 0 UTX DATD 13 UTX DATD 9 UTX DATD 6 UTX DATD 3 UTX SOCD UTX ADRD 4 UTX CLAV0 3 4 URX ADRU 1 URX ADRU 2 URX ADRU 3 URX SOCU URX DATU 7 URX DATU 11 URX DATU 15 CPR ADSC CPR ADR 15 CPR ADR 11 NC CPR ADR 4 CPR ADR 3 CPR DAT 17 CPR DAT 16 CPR DAT 9 CPR DAT 8 CPR DAT 4 CPR DAT 1 UTX DATD 14 UTX DATD 10 UTX DATD 7 UTX CLAV3 UTX ADRD 1 UTX ADRD 2 UTX ADRD 3 4 5 URX ADRU 4 VDD18 URX CLAVU 0 URX CLAVU 1 VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS UTX ENBD 2 UTX ENBD 3 VDD18 UTX ADRD 0 5 6 URX CLAVU 2 URX CLAVU 3 CSR WEU CSR CASU VSS VSS CSR DATD 30 CSR DATD 31 UTX ENBD 0 UTX ENBD 1 6 7 CSR RASU CSR CSU CSR ADRU 0 CSR ADRU 1 VDD33 VDD33 CSR DATD 26 CSR DATD 27 CSR DATD 28 CSR DATD 29 7 8 CSR ADRU 2 CSR ADRU 3 CSR ADRU 4 CSR ADRU 5 VDD33 VDD33 CSR DATD 23 CSR DATD 24 NC CSR DATD 25 8 9 CSR ADRU 6 CSR ADRU 7 CSR ADRU 8 CSR ADRU 9 VSS VSS CSR DATD 19 CSR DATD 20 CSR DATD 21 CSR DATD 22 9 10 CSR ADRU 10 CSR ADRU 11 CSR BAU 1 CSR BAU 0 VSS VSS CSR DATD 16 CSR DATD 17 NC CSR DATD 18 10 11 CSR DATU 1 CSR DATU 2 CSR DATU 3 CSR DATU 0 VDD33 VDD33 CSR DATD 15 CSR DATD 12 CSR DATD 13 CSR DATD 14 11 12 VDD18 CSR DATU 4 CSR DATU 5 CSR DATU 6 VDD33 VSS VSS VSS VSS VSS VSS VDD33 CSR DATD 10 CSR DATD 9 VDD18 CSR DATD 11 12 13 CSR DATU 8 CSR DATU 9 CSR DATU 10 CSR DATU 7 VSS VSS VSS VSS VSS VSS VSS VSS CSR DATD 8 CSR DATD 5 CSR DATD 6 CSR DATD 7 13 14 CSR DATU 13 CSR DATU 12 CSR DATU 11 CSR DATU 14 VSS VSS VSS VSS VSS VSS VSS VSS CSR DATD 2 CSR DATD 4 NC CSR DATD 3 14 15 CSR DATU 18 CSR DATU 17 CSR DATU 15 CSR DATU 16 VDD33 VSS VSS VSS VSS VSS VSS VDD33 CSR DATD 1 CSR DATD 0 CSR BAD 0 CSR BAD 1 15 16 CSR DATU 21 CSR DATU 20 CSR DATU 19 CSR DATU 22 VDD33 VSS VSS VSS VSS VSS VSS VDD33 CSR ADRD 8 CSR ADRD 11 CSR ADRD 10 CSR ADRD 9 16 17 CSR DATU 26 CSR DATU 25 CSR DATU 24 CSR DATU 23 VSS VSS CSR ADRD 7 CSR ADRD 6 CSR ADRD 5 CSR ADRD 4 17 18 CSR DATU 29 CSR DATU 28 VDD18 CSR DATU 27 VSS VSS CSR ADRD 3 CSR ADRD 2 CSR ADRD 1 NC 18 19 SPI SI ERC RAM SEL CSR DATU 31 CSR DATU 30 VDD33 VDD33 CSR ADRD 0 CSR CSD CSR RASD CSR CASD 19 20 TST ERC CLK SPI CS SPI CLK SPI SO VDD33 VDD33 CSR WED VDD18 URX ENBD 3 URX ENBD 2 20 21 TDI TRST EXT FREEZE RAM CLK VSS VSS URX ENBD 1 URX ENBD 0 URX ADRD 4 URX ADRD 3 21 22 UTX ENBU 0 TDO TMS TCK VSS VSS VDD33 VDD33 23 UTX ENBU 3 UTX ENBU 2 UTX ENBU 1 UTX ADRU 4 UTX DATU 2 UTX DATU 6 UTX DATU 10 UTX DATU 14 24 UTX ADRU 1 UTX ADRU 0 NC UTX PRTYU UTX DATU 1 UTX DATU 5 UTX DATU 9 25 UTX ADRU 2 UTX CLAVU 0 UTX CLAVU 3 UTX SOCU UTX DATU 0 UTX DATU 4 26 UTX ADRU 3 UTX CLAVU 1 UTX CLAVU 2 VDD18 UTX CLKU A B C D E Figure 2-1 Bottom View VSS Signal Names: xxx: active high xxx: active low VSS: 0V VDD33: 3.3V VDD18: 1.8V VSS VSS VSS VSS VSS Special Pin Type: oD: open Drain tri: TriState Internal Pull-Up Transistor Internal Pull-Down Transistor xxx signal name VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS URX ADRD 2 URX ADRD 1 URX ADRD 0 URX CLAVD 3 22 MP INT MP RD QCI TX FRAME VDD18 PLL VSS PLL MP ADR2 VDD18 MP DAT1 MP DAT2 MP DAT6 MP DAT9 MP DAT13 URX DATD 1 URX DATD 4 NC URX CLAVD 2 URX CLAVD 1 URX CLAVD 0 23 UTX DATU 13 MP CS MP WR ERC FREQ SEL VSS PLL SYS CLK SEL SYS CLK MP ADR3 MP ADR6 MP DAT3 MP DAT7 MP DAT10 MP DAT14 VDD18 URX DATD 5 URX DATD 8 URX DATD 15 NC URX PRTYD 24 UTX DATU 8 UTX DATU 12 MP MODE MP RDY QCI TXCLK ERC CLK RESET MP ADR0 MP ADR4 MP ADR7 MP DAT4 MP DAT8 MP DAT11 MP DAT15 URX DATD 2 URX DATD 6 URX DATD 9 URX DATD 11 URX CLKD URX SOCD 25 UTX DATU 3 UTX DATU 7 UTX DATU 11 UTX DATU 15 MP INTD QCI TXDAT ERC CLK SEL VDD18 PLL MP ADR1 MP ADR5 MP DAT0 MP DAT5 NC MP DAT12 URX DATD 0 URX DATD 3 URX DATD 7 URX DATD 10 URX DATD 12 URX DATD 13 URX DATD 14 26 F G H J K L M N P R T U V W Y AA AB AC AD AE AF oD tri oD Pin Configuration (Bottom View) Preliminary Data Sheet 24 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY 2.2 Pin Diagram with Functional Groupings * Bottom View SPI & Test IF Cell Pointer SSRAM IF UTOPIA Transmit Downstream IF A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF 1 URX PRTYU URX CLKU URX DATU 0 URX DATU 2 URX DATU 4 URX DATU 8 URX DATU 12 VDD18 CPR ADR 18 CPR ADR 14 CPR ADR 10 CPR ADR 7 CPR ADR 2 CPR DAT 18 CPR DAT 13 CPR DAT 10 CPR DAT 5 CPR DAT 2 UTX DATD 15 UTX DATD 11 NC UTX DATD 4 UTX DATD 1 NC UTX CLKD UTX CLAV2 1 2 URX ENBU 1 URX ENBU 2 URX DATU 1 URX DATU 3 URX DATU 5 URX DATU 9 URX DATU 13 CPR OE CPR ADR 17 CPR ADR 13 CPR ADR 9 CPR ADR 6 CPR ADR 1 CPR DAT 19 CPR DAT 14 CPR DAT 11 CPR DAT 6 NC VDD18 UTX DATD 12 UTX DATD 8 UTX DATD 5 UTX DATD 2 UTX DATD 0 UTX PRTYD UTX CLAV1 2 3 URX ENBU 3 URX ADRU 0 URX ENBU 0 NC URX DATU 6 URX DATU 10 URX DATU 14 CPR GW CPR ADR 16 CPR ADR 12 CPR ADR 8 CPR ADR 5 CPR ADR 0 VDD18 CPR DAT 15 CPR DAT 12 CPR DAT 7 CPR DAT 3 CPR DAT 0 UTX DATD 13 UTX DATD 9 UTX DATD 6 UTX DATD 3 UTX SOCD UTX ADRD 4 UTX CLAV0 3 4 URX ADRU 1 URX ADRU 2 URX ADRU 3 URX SOCU URX DATU 7 URX DATU 11 URX DATU 15 CPR ADSC CPR ADR 15 CPR ADR 11 NC CPR ADR 4 CPR ADR 3 CPR DAT 17 CPR DAT 16 CPR DAT 9 CPR DAT 8 CPR DAT 4 CPR DAT 1 UTX DATD 14 UTX DATD 10 UTX DATD 7 UTX CLAV3 UTX ADRD 1 UTX ADRD 2 UTX ADRD 3 4 5 URX ADRU 4 VDD18 URX CLAVU 0 URX CLAVU 1 VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS UTX ENBD 2 UTX ENBD 3 VDD18 UTX ADRD 0 5 6 URX CLAVU 2 URX CLAVU 3 CSR WEU CSR CASU VSS VSS CSR DATD 30 CSR DATD 31 UTX ENBD 0 UTX ENBD 1 6 7 CSR RASU CSR CSU CSR ADRU 0 CSR ADRU 1 VDD33 VDD33 CSR DATD 26 CSR DATD 27 CSR DATD 28 CSR DATD 29 7 8 CSR ADRU 2 CSR ADRU 3 CSR ADRU 4 CSR ADRU 5 VDD33 VDD33 CSR DATD 23 CSR DATD 24 NC CSR DATD 25 8 9 CSR ADRU 6 CSR ADRU 7 CSR ADRU 8 CSR ADRU 9 VSS VSS CSR DATD 19 CSR DATD 20 CSR DATD 21 CSR DATD 22 9 10 CSR ADRU 10 CSR ADRU 11 CSR BAU 1 CSR BAU 0 VSS VSS CSR DATD 16 CSR DATD 17 NC CSR DATD 18 10 11 CSR DATU 1 CSR DATU 2 CSR DATU 3 CSR DATU 0 VDD33 VDD33 CSR DATD 15 CSR DATD 12 CSR DATD 13 CSR DATD 14 11 12 VDD18 CSR DATU 4 CSR DATU 5 CSR DATU 6 VDD33 VSS VSS VSS VSS VSS VSS VDD33 CSR DATD 10 CSR DATD 9 VDD18 CSR DATD 11 12 13 CSR DATU 8 CSR DATU 9 CSR DATU 10 CSR DATU 7 VSS VSS VSS VSS VSS VSS VSS VSS CSR DATD 8 CSR DATD 5 CSR DATD 6 CSR DATD 7 13 14 CSR DATU 13 CSR DATU 12 CSR DATU 11 CSR DATU 14 VSS VSS VSS VSS VSS VSS VSS VSS CSR DATD 2 CSR DATD 4 NC CSR DATD 3 14 15 CSR DATU 18 CSR DATU 17 CSR DATU 15 CSR DATU 16 VDD33 VSS VSS VSS VSS VSS VSS VDD33 CSR DATD 1 CSR DATD 0 CSR BAD 0 CSR BAD 1 15 16 CSR DATU 21 CSR DATU 20 CSR DATU 19 CSR DATU 22 VDD33 VSS VSS VSS VSS VSS VSS VDD33 CSR ADRD 8 CSR ADRD 11 CSR ADRD 10 CSR ADRD 9 16 17 CSR DATU 26 CSR DATU 25 CSR DATU 24 CSR DATU 23 VSS VSS CSR ADRD 7 CSR ADRD 6 CSR ADRD 5 CSR ADRD 4 17 18 CSR DATU 29 CSR DATU 28 VDD18 CSR DATU 27 VSS VSS CSR ADRD 3 CSR ADRD 2 CSR ADRD 1 NC 18 19 SPI SI ERC RAM SEL CSR DATU 31 CSR DATU 30 VDD33 VDD33 CSR ADRD 0 CSR CSD CSR RASD CSR CASD 19 20 TST ERC CLK SPI CS SPI CLK SPI SO VDD33 VDD33 CSR WED VDD18 URX ENBD 3 URX ENBD 2 20 21 TDI TRST EXT FREEZE RAM CLK VSS VSS URX ENBD 1 URX ENBD 0 URX ADRD 4 URX ADRD 3 21 22 UTX ENBU 0 TDO TMS TCK VSS VSS VDD33 VDD33 23 UTX ENBU 3 UTX ENBU 2 UTX ENBU 1 UTX ADRU 4 UTX DATU 2 UTX DATU 6 UTX DATU 10 UTX DATU 14 24 UTX ADRU 1 UTX ADRU 0 NC UTX PRTYU UTX DATU 1 UTX DATU 5 UTX DATU 9 25 UTX ADRU 2 UTX CLAVU 0 UTX CLAVU 3 UTX SOCU UTX DATU 0 UTX DATU 4 26 UTX ADRU 3 UTX CLAVU 1 UTX CLAVU 2 VDD18 UTX CLKU A B C D E Bottom View UTOPIA Transmit Upstream IF Figure 2-2 VSS Signal Names: xxx: active high xxx: active low VSS: 0V VDD33: 3.3V VDD18: 1.8V VSS VSS VSS VSS VSS Special Pin Type: oD: open Drain tri: TriState Internal Pull-Up Transistor Internal Pull-Down Transistor xxx signal name VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS VDD33 VDD33 VSS VSS URX ADRD 2 URX ADRD 1 URX ADRD 0 URX CLAVD 3 22 MP INT MP RD QCI TX FRAME VDD18 PLL VSS PLL MP ADR2 VDD18 MP DAT1 MP DAT2 MP DAT6 MP DAT9 MP DAT13 URX DATD 1 URX DATD 4 NC URX CLAVD 2 URX CLAVD 1 URX CLAVD 0 23 UTX DATU 13 MP CS MP WR ERC FREQ SEL VSS PLL SYS CLK SEL SYS CLK MP ADR3 MP ADR6 MP DAT3 MP DAT7 MP DAT10 MP DAT14 VDD18 URX DATD 5 URX DATD 8 URX DATD 15 NC URX PRTYD 24 UTX DATU 8 UTX DATU 12 MP MODE MP RDY QCI TXCLK ERC CLK RESET MP ADR0 MP ADR4 MP ADR7 MP DAT4 MP DAT8 MP DAT11 MP DAT15 URX DATD 2 URX DATD 6 URX DATD 9 URX DATD 11 URX CLKD URX SOCD 25 UTX DATU 3 UTX DATU 7 UTX DATU 11 UTX DATU 15 MP INTD QCI TXDAT ERC CLK SEL VDD18 PLL MP ADR1 MP ADR5 MP DAT0 MP DAT5 NC MP DAT12 URX DATD 0 URX DATD 3 URX DATD 7 URX DATD 10 URX DATD 12 URX DATD 13 URX DATD 14 26 F G H J K L M N P R T U V W Y AA AB AC AD AE AF oD tri oD uP IF, Clock Supply IF and QCI IF Cell Storage SDRAM Downstrem IF Cell Storage SDRAM Upstrem IF UTOPIA Receive Upstream IF UTOPIA Receive Downstream IF Pin Configuration (Bottom View) Preliminary Data Sheet 25 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY 2.3 Pin Definitions and Functions Table 2-1 lists and explains all pins/balls organized in functional groups. Table 2-1 uses the following naming conventions: Ball No. Ball Number with respect to package outline (see Figure 2-1) Symbol Signal Name Type Type of pin/ball: Function I Input pin IPD Input pin (Internal Pull-Down Transistor) IPU Input pin (Internal Pull-Up Transistor) O Output pin (Push/Pull) O (oD) Output pin (Open Drain) O (tri) Output pin (TriState) Functional pin/ball description Note: The ABMP signal pins are not 5V I/O tolerant. For further details refer to "DC Characteristics" on Page 345. Table 2-1 Ball No. 2.3.1 Ball Definitions and Functions Symbol Type Function Common System Clock Supply (6 pins) P24 SYSCLK I System Clock This clock signal feeds DPLL1 and DPLL2 and the internal ABMP Core Clock depending on signal SYSCLKSEL. N24 SYSCLKSEL IPD Internal ABMP Core Clock Source Select: 'H': Internal Core Clock is supplied by signal SYSCLK 'L': Internal Core Clock is supplied by DPLL1 M25 ERCCLK I Alternative ERC Clock Supply It is recommended to connect this signal to VSS if not used. Preliminary Data Sheet 26 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball Definitions and Functions (cont'd) Ball No. Symbol Type Function M26 ERCCLKSEL IPD Internal Alternative ERC Clock Source Select: 'H': ERC unit alternative clock is supplied by signal `ERCCLK'. 'L': ERC unit alternative clock is supplied by DPLL2. L24 ERCFREQSEL IPD Internal ERC Clock Source Select: 'H': Asynchronous ERC Operation ERC unit clock is supplied by signal `ERCCLK' or DPLL2. 'L': Synchronous ERC Operation ERC unit clock is supplied by internal core clock (signal `SYSCLK' or DPLL1). D21 RAMCLK O Reference clock for external RAMs (CSRU, CSRD and CPR) 2.3.2 Utopia Receive Interface Upstream (Master/Slave) (32 pins) 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 A1 URXPRTYU I UTOPIA Receive Data Bus Upstream (from PHY) IPD UTOPIA Receive Odd Parity of URXDATU(15:0) (PHY side) URXDATU(15:0) G4, G3, G2, G1, F4, F3, F2, F1, E4, E3, E2, E1, D2, D1, C2, C1 Preliminary Data Sheet 27 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Ball Definitions and Functions (cont'd) Ball No. Symbol Type Function A5, C4, B4, A4, B3 4, 3, 2, 1, 0 I/OPD UTOPIA Receive Address Bus (PHY side) Master Mode: output Slave Mode: input A3, B2, A2, C3 3, 2, 1, 0 I/OPU UTOPIA Receive Enable Bus (PHY side) Master Mode: output Slave Mode: input B6, A6, D5, C5 3, 2, 1, 0 URXCLAVU(3:0) URXENBU(3:0) URXADRU(4:0) Table 2-1 I/OPD UTOPIA Receive CLAV Bus (PHY side) Master Mode: input Slave Mode: output D4 URXSOCU IPD UTOPIA Receive Start of Cell signal (PHY side) B1 URXCLKU I UTOPIA Receive Clock signal (PHY side) Preliminary Data Sheet 28 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball No. Ball Definitions and Functions (cont'd) Symbol 2.3.3 Type Function Utopia Transmit Interface Downstream (Master/Slave) (32 pins) 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 AE2 UTXPRTYD AE3, AF4, AE4, AD4, AF5 4, 3, 2, 1, 0 AD5, AC5, AF6, AE6 3, 2, 1, 0 O UTOPIA Transmit Data Bus Downstream (to PHY) OPD UTOPIA Transmit Odd Parity of UTXDATD(15:0) (PHY side) I/OPD UTOPIA Transmit Address Bus (PHY side) Master Mode: output Slave Mode: input I/OPU UTOPIA Transmit Enable Bus (PHY side) Master Mode: output Slave Mode: input UTXENBD(3:0) UTXADRD(4:0) UTXDATD(15:0) W1, Y4, Y3, Y2, Y1, AA4, AA3, AA2, AB4, AB3, AB2, AB1, AC3, AC2, AC1, AD2 Preliminary Data Sheet 29 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Ball Definitions and Functions (cont'd) Ball No. Symbol Type Function AC4, AF1, AF2, AF3 3, 2, 1, 0 UTXCLAVD(3:0) Table 2-1 I/OPD UTOPIA Transmit CLAV Bus (PHY side) Master Mode: input Slave Mode: output AD3 UTXSOCD OPD UTOPIA Transmit Start of Cell signal (PHY side) AE1 UTXCLKD I UTOPIA Transmit Clock signal (PHY side) 2.3.4 Utopia Receive Interface Downstream (Master/Slave) (32 pins) 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 AF24 URXPRTYD AE21, AF21, AC22, AD22, AE22 4, 3, 2, 1, 0 I UTOPIA Receive Data Bus Downstream (from SF) IPD UTOPIA Receive Odd Parity of URXDATD(15:0) (SF side) I/OPD UTOPIA Receive Address Bus (SF side) Master Mode: output Slave Mode: input URXADRD(4:0) URXDATD(15:0) AD24, AF26, AE26, AD26, AD25, AC26, AC25, AC24, AB26, AB25, AB24, AB23, AA26, AA25, AA23, Y26 Preliminary Data Sheet 30 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Ball Definitions and Functions (cont'd) Ball No. Symbol Type Function AE20, AF20, AC21, AD21 3, 2, 1, 0 I/OPU UTOPIA Receive Enable Bus (SF side) Master Mode: output Slave Mode: input AF22, AD23, AE23, AF23 3, 2, 1, 0 URXCLAVD(3:0) URXENBD(3:0) Table 2-1 I/OPD UTOPIA Receive CLAV Bus (SF side) Master Mode: input Slave Mode: output AF25 URXSOCD IPD UTOPIA Receive Start of Cell signal (SF side) AE25 URXCLKD I UTOPIA Receive Clock signal (SF side) 2.3.5 Utopia Transmit Interface Upstream (Master/Slave) (32 pins) 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 D24 UTXPRTYU O UTOPIA Transmit Data Bus Upstream (to SF) OPD UTOPIA Transmit Odd Parity of UTXDATU(15:0) (SF side) UTXDATU(15:0) J26, H23, H24, H25, H26, G23, G24, G25, G26, F23, F24, F25, F26, E23, E24, E25 Preliminary Data Sheet 31 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Ball Definitions and Functions (cont'd) Ball No. Symbol Type Function D23, A26, A25, A24, B24 4, 3, 2, 1, 0 I/OPD UTOPIA Transmit Address Bus (SF side) Master Mode: output Slave Mode: input A23, B23, C23, A22 3, 2, 1, 0 I/OPU UTOPIA Transmit Enable Bus (SF side) Master Mode: output Slave Mode: input C25, C26, B26, B25 3, 2, 1, 0 UTXCLAVU(3:0) UTXENBU(3:0) UTXADRU(4:0) Table 2-1 I/OPD UTOPIA Transmit CLAV Bus (SF side) Master Mode: input Slave Mode: output D25 UTXSOCU OPD UTOPIA Transmit Start of Cell signal (SF side) E26 UTXCLKU I UTOPIA Transmit Clock signal (SF side) 2.3.6 N25 Microprocessor Interface (32 pins) RESET Preliminary Data Sheet I ABMP Reset 32 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball Definitions and Functions (cont'd) Symbol Type Function Y25, Y24, Y23, W26, W25, W24, W23, V25, V24, V23, U26, U25, U24, U23, T23, T26 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 I/O Microprocessor Data Bus T25, T24, R26, R25, R24, P23, P26, P25 7, 6, 5, 4, 3, 2, 1, 0 I Microprocessor Address Bus K24 MPWR I WR when MPMOD=0 (Intel Mode) R/W when MPMOD=1 (Motorola Mode). K23 MPRD I RD when MPMOD=0 (Intel Mode) DS when MPMOD=1 (Motorola Mode). J24 MPCS I Chip Select from Microprocessor. J23 MPINT O(oD) Interrupt Request to Microprocessor. Open drain, needs external pull-up resistor. Interrupt pins of several devices can be wired-or together. MPADR(7:0) MPDAT(15:0) Ball No. Preliminary Data Sheet 33 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball Definitions and Functions (cont'd) Ball No. Symbol Type Function K26 MPINTD O(oD) Interrupt Request DBA to Microprocessor. Open drain, needs external pull-up resistor. Interrupt pins of several devices can be wired-or together. This interrupt signal is exclusively for DBA related events and thus associated to register ISRDBA []. K25 MPRDY O(tri) Ready Output to Microprocessor for read and write accesses. J25 MPMODE IPD Select Intel type processor when connected to logical 0 or select Motorola type processor when connected to logical 1. Preliminary Data Sheet 34 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 2.3.7 Symbol Type Function Cell Storage RAM Upstream (50 pins) C19, D19, A18, B18, D18, A17, B17, C17, D17, D16, A16, B16, C16, A15, B15, D15, C15, D14, A14, B14, C14, C13, B13, A13, D13, D12, C12, B12, C11, B11, A11, D11 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 D10 C10 I/O Data Bus to Cell Storage RAM Upstream CSRBAU0 O Cell Storage RAM Bank Address 0 Upstream CSRBAU1 O Cell Storage RAM Bank Address 1Upstream CSRDATU(31:0) Ball No. Ball Definitions and Functions (cont'd) Preliminary Data Sheet 35 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball Definitions and Functions (cont'd) Symbol Type Function B10, A10, D9, C9, B9, A9, D8, C8, B8, A8, D7, C7 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 O Address Bus of Cell Storage RAM Upstream B7 CSRCSU O Cell Storage RAM Upstream Chip Select A7 CSRRASU O Cell Storage RAM Upstream Row Address Strobe D6 CSRCASU O Cell Storage RAM Upstream Column Address Strobe C6 CSRWEU O Cell Storage RAM Upstream Write Enable 2.3.8 CSRADRU(11:0) Ball No. Cell Storage RAM Downstream (50 pins) Preliminary Data Sheet 36 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball Definitions and Functions (cont'd) Symbol Type Function AD6, AC6, AF7, AE7, AD7, AC7, AF8, AD8, AC8, AF9, AE9, AD9, AC9, AF10, AD10, AC10, AC11, AF11, AE11, AD11, AF12, AC12, AD12, AC13, AF13, AE13, AD13, AD14, AF14, AC14, AC15, AD15 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 I/O Data Bus to Cell Storage RAM Downstream AE15 CSRBAD0 O Cell Storage RAM Bank Address 0 Downstream AF15 CSRBAD1 O Cell Storage RAM Bank Address 1Downstream CSRDATD(31:0) Ball No. Preliminary Data Sheet 37 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball Definitions and Functions (cont'd) Symbol Type Function AD16, AE16, AF16, AC16, AC17, AD17, AE17, AF17, AC18, AD18, AE18, AC19 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 O Address Bus of Cell Storage RAM Downstream AD19 CSRCSD O Cell Storage RAM Downstream Chip Select AE19 CSRRASD O Cell Storage RAM Downstream Row Address Strobe AF19 CSRCASD O Cell Storage RAM Downstream Column Address Strobe AC20 CSRWED O Cell Storage RAM Downstream Write Enable CSRADRD(11:0) Ball No. Preliminary Data Sheet 38 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 2.3.9 P2, P1, P4, R4, R3, R2, R1, T3, T2, T1, T4, U4, U3, U2, U1, V4, V3, V1, W4, W3 Symbol Type Function Common Up- and Downstream Cell Pointer RAM (42 pins) 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 I/O Data Bus to Cell Pointer RAM CPRDAT(19:0) Ball No. Ball Definitions and Functions (cont'd) Preliminary Data Sheet 39 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball Definitions and Functions (cont'd) Symbol Type Function J1, J2, J3, J4, K1, K2, K3, K4, L1, L2, L3, M1, M2, M3, M4, N4, N1, N2, N3 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 O Address Bus of Cell Pointer RAM H4 CPRADSC O Cell Pointer RAM Chip Select H3 CPRGW O Cell Pointer RAM H2 CPROE O Cell Pointer RAM Output Enable 2.3.10 CPRADR(18:0) Ball No. JTAG Boundary Scan (5 pins) A21 TDI IPU Test Data Input. This pin has an internal pull-up resistor. D22 TCK IPU Test Clock. This pin has an internal pull-up resistor. C22 TMS IPU Test Mode Select. This pin has an internal pull-up resistor. B21 TRST IPU Test Data Reset This pin has an internal pull-up resistor. B22 TDO O Test Data Output In normal operation, must not be connected. Preliminary Data Sheet 40 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball No. 2.3.11 Ball Definitions and Functions (cont'd) Symbol Type Function SPI Interface (5 pins) B20 SPICS O SPI Chip Select C20 SPICLK O SPI Clock D20 SPISO O SPI Serial Out A19 SPISI IPD SPI Serial In B19 IOPRAMSEL IPD IOP Code RAM Select 2.3.12 QCI Interface (3 pins) L26 QCITXDAT O QCI Transmit Data L25 QCITXCLK I QCI Clock L23 QCITXFRAME I 2.3.13 A20 2.3.14 C21 2.3.15 QCI Transmit Frame Sync Test (1 pin) TSTERCCLK IPD Production Test (1 pin) EXTFREEZ IPD For device test only, do not connect. Must not be connected in normal operation. Supply (74 VSS , 32 VDD33 and 14 VDD18 pins) Preliminary Data Sheet 41 2001-14-01 Prel. ABMP Data Sheet Pin Descriptions PRELIMINARY Table 2-1 Ball No. Ball Definitions and Functions (cont'd) Symbol Type Function E5, E6, E9, E10, E13, E14, E17, VSS, Chip Ground E18, E21, E22, F5, F22, J5, J22, (All pins should be connected to the same level) K5, K22, L11, L12, L13, L14, L15, L16, M11, M12, M13, M14, M15, M16, N5, N11, N12, N13, N14, N15, N16, N22, P5, P11, P12, P13, P14, P15, P16, P22, R11, R12, R13, R14, R15, R16, T11, T12, T13, T14, T15, T16, U5, U22, V5, V22, AA5, AA22, AB5, AB6, AB9, AB10, AB13, AB14, AB17, AB18, AB21, AB22 E7, E8, E11, E12, E15, E16, E19, VDD33, Chip 3.3 V Supply E20, G5, G22, H5, H22, L5, L22, (All pins should be connected to the same level) M5, M22, R5, R22, T5, T22, W5, W22, Y5, Y22, AB7, AB8, AB11, AB12, AB15, AB16, AB19, AB20 B5, A12, C18, D26, R23, AA24, AD20, AE12, AE5, W2, P3, H1 VDD18, Chip 1.8 V Supply (All pins should be connected to the same level) N23, M24 VSS PLL, Chip GND Supply (All pins should be connected to the same level) N26, M23 VDD18 PLL, Chip 1.8 V Supply (All pins should be connected to the same level) 2.3.16 Un-Connected (13 pins) D3, L4, V2, AA1, AD1, AE8, AE10, Un-Conncted pins. AE14, AF18, AE24, AC23, V26, It is recommended to leave these pins unconnected C24 on the board to guarantee board compatibility to furture device versions. Total signal pins: 323; total power supply pins: 120. Preliminary Data Sheet 42 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3 Functional Description 3.1 Block Diagrams Figure 3-1 shows a typical sub-system integration scenario of the ABMP. The memory configurations are examples and depend on ABMP operation modes and required queuing resources. * Cell Pointer RAM Upstream Cell Storage RAM ... ... ... ... 4M*16 4M*16 ... ... 512K*32 ... ... ... ... ... ... UTOPIA L2 Interface (PHY Side) UTOPIA L2 Interface (Backplane Side) PXB 4330 ABMP Queue Congestion Indication Interface ... ... EEPROM ... Test/ JTAG/ Clocking IF ... ... Optional Code ROM ... 16 Bit uP Interface Bus ... ... Figure 3-1 4M*16 4M*16 Downstream Cell Storage RAM Sub-System Integration Diagram Figure 3-2 shows a functional block diagram illustration of the ABMP. The function blocks are referenced and described in more details in subsequent chapters. Preliminary Data Sheet 43 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY * 688 Mbps SDRAM Interface (up) ARC UTOPIA IF (PHY Side) 64 50 42 SSRAM IF 688 Mbps Cell Handler (CH) upstream Queue Manager (QM) ERC Scheduler Block (SB) AAL5 688 Mbps UTOPIA IF (Backplane Side) 14 Test/ Clocks 64 874 Mbps Cell Handler (CH) downstream ARC BSCAN/ SPI 10 Figure 3-2 uP IF 32 QCI IF SDRAM Interface (dn) 3 50 Functional Block Diagram Figure 3-3 shows a logical illustration of the ATM Buffer Manager (ABMP) core for one direction. Cells with up to 688 Mbit/s equivalent data rate are received by the UTOPIA receive interface and get assigned to schedulers and queues within the cell acceptance part of the Queue Manager unit. The cell acceptance algorithm verifies that no thresholds are exceeded which are provided for queues, schedulers, service classes (traffic classes), as well as the global buffer. Once accepted, a cell cannot be lost, but will be emitted at the respective UTOPIA interface after some time (exception: queue has been disabled while cells are stored). Alternatively cells can be received from the microprocessor interface via the AAL5 assistant unit. In case of ABR connections, Resource Management (RM) cells are handled in a dedicated function block within the Enhanced Rate Control (ERC) unit. The demultiplexer forwards the cells to the respective queue associated with scheduler which sorts them for transmission according to the programmed configuration. As part of the scheduling function the optional Peak Rate Limiter and Dual-Leaky-Bucket shaper is provided for the shaping of individual queues (connections). The scheduler is the key queuing element of the ABMP. The behavior of the scheduler is described in subsequent chapters. The output multiplexer recombines the cell streams of all schedulers. Their output rates shall be programmed such that the accumulated rate does not exceed the total output bandwidth. Emitted cells are either forwarded to the UTOPIA transmit interface or to the AAL5 assistant unit for extraction Preliminary Data Sheet 44 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Global Real Time Bypass ERC Scheduler #127 D E M U X Queue withShaping Function Scheduler Rate Shaping Cyclic Mux WFQ Weighted Fair Queueing Scheduler M U X AAL5 Assistant W F Q uP Interface cells out UTOPIA Transmit Scheduler #1 Scheduler #0 ABR Control Cell Acceptance Algorithm QM Address Reduction cells in AAL5 Assistant uP Interface UTOPIA Receive ARC Strict Priority Mux Figure 3-3 Logical Block Diagram (One Direction) Preliminary Data Sheet 45 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.2 Functional Block Description 3.2.1 Cell Handler (Upstream/Downstream) The Cell Handler (CH) units are responsible for the physical data flow of storing and retrieving cells to/from the respective Cell Storage RAM or insertion and extraction of Resource Management (RM) cells. Updates to the cell header section or to the cell contents in case of OAM-RM cells are also performed by the Cell Handler units. 3.2.2 Queue Manager and Scheduler Block (Overview) The Queue Manager (QM) unit is the central function of the ABMP device and handles the logical data flows for upstream and downstream direction. It utilizes the Scheduler Block (SB) as a co-processor function and a common Cell Pointer RAM (SSRAM) to administrate cell storage. Any cell entering the CH unit is reported to the QM unit running the cell acceptance algorithm. In a first step a cell is classified and associated to the logical resource entities connection, queue, traffic class and scheduler. As an exception Resource Management (RM) cells are extracted and forwarded to the Enhanced Rate Control (ERC) unit for further processing. Once all associated resources are determined, the QM runs the cell acceptance algorithm based on the current parameter sets. As a result of all threshold evaluations the cell is either discarded or accepted and related counters are updated accordingly. Non-empty queues are reported to the Scheduler Block (SB) unit to be scheduled by the associated calendar. In return the SB unit reports queues to the Queue Manager that are due for cell transmission in the current cell slot. Upon a cell emit request for a specific queue the QM either requests the Cell Handler to retrieve and transmit the next cell or to insert an RM cell as prepared by the ERC unit. Since the QM and SB units are the central functions of the ABMP device they are described in more details in chapter "Detailed Queue Manager and Scheduler Block Description" on Page 63. 3.2.3 Enhanced Rate Control (ERC) Unit (Overview) The Enhanced Rate Control (ERC) unit interfaces to the QM and the CH units for RM cell insertion and extraction. It controls the following functions on a per connection basis: * ABR-VS/VD: Processing of RM cells, related state machines and rate adjustment * ABR-ER: Rate calculation and RM cell processing (and adjustment in case of RSC) * VBR: Dual-Leaky-Bucket algorithm for VBR shaping The ERC unit is described in more details in chapter "Detailed ERC Description" on Page 78. Preliminary Data Sheet 46 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.2.4 AAL5 Assistant The AAL5 Assistant unit allows insertion and extraction of AAL5 segmented packets from and towards the microprocessor interface. Supported by the corresponding software driver, the unit realizes an "in-line" SAR function, i.e. one packet is processed at any time by a SAR function. However upstream and downstream flow as well as extraction and insertion are independent functions that may be operated interleaved. For extraction at least one scheduler must be associated to the AAL5 Assistant unit and each queue assigned to the scheduler must be assigned to a VC-merge group to guarantee that complete packets are forwarded to the AAL5 Assistant unit. The scheduler rates can be adjusted according to the microprocessor interface bandwidth or the intended CPU load. However the CPU may extract the payload chunks at a lower rate which will result in internal scheduler backpressure. No data loss will occur in that case. The CPU reads consecutive 48 byte payload chunks that can be re-assembled immediately in the host memory while the AAL5 Assistant unit checks the AAL5 trailor. For insertion the CPU prepares the ATM cell header for the following packet and writes 48 byte payload chunks to the AAL5 Assistant unit which will generate the cells and the AAL5 trailor for automatic completion of the last cell of the packet. Internally, the cells are forwarded to either the downstream or upstream Cell Handler and processed in the same way as cells received by an UTOPIA receive interface. Preliminary Data Sheet 47 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.2.5 Internal Address Reduction Unit The ABMP requires an internal 16 bit Local Connection Identifier (LCI) to address its resources. Two basic cell addressing schemes are supported to extract/generate an LCI from the cell header: * LCI mapping modes An external device generates an LCI and mapps it into the ATM cell header. Three different mapping modes are supported by the ABMP. The LCI mapping modes are described as part of the UTOPIA interface description in chapters "UTOPIA L2 Interfaces (PHY-side)" on Page 115 and "UTOPIA L2 Interface (Backplane-side)" on Page 126. * Internal Address Reduction mode The ABMP generates its own internal LCI as a programmable combination of the cell header fields VPI, VCI and the Port Number (PN). The port number is taken either from the UTOPIA port number, the UDF1 or the UDF2 cell header byte. Internal AddressReduction Two parameters in register "MODE2" on Page 325 determine the building function of the internal LCI value: 1. PNUM(2:0) Determines the number of bits taken from the port number field. 2. MNUM(3:0) Determines the VCI and VPI ranges depending on the cell header VPI value. Two translation functions are effective depending on the cell header VPI(11:0) value compared to the configured parameter MNUM. In case x = 16 - MNUM x VPI (11,0) < 2 - 1 ;with x = 0 for for MNUM > 0 MNUM = 0 the LCI is build by {VPI, VCI, PN} values whereas the VCI range is given by (MNUM - PNUM) bits and the VPI range is given by (16 - MNUM) bits. Note: Programming MNUM(3:0) = 0 is interpreted as decimal 16. The following tables provide the possible LCI building patterns for all PNUM and MNUM configurations. The resulting LCI is internally treated the same way as in the LCI cell header mapping modes, i.e. the two MSB's are checked against the quarter segement configuration that allows for cascading of up to 4 ABMP devices. Note: VPI, VCI cell header field and port number bit positions that are not mapped into the LCI are checked against `0'. Mismatches are treated as `invalid LCI' and the cell is discarded. Preliminary Data Sheet 48 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY PNUM MNUM 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 VPI14 VPI13 VPI12 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 0 2 VPI13 VPI12 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI1 0 3 VPI12 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI2 VCI1 0 4 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI3 VCI2 VCI1 0 5 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI4 VCI3 VCI2 VCI1 0 6 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI5 VCI4 VCI3 VCI2 VCI1 0 7 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 0 8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 0 9 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 0 10 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 0 11 VPI4 VPI3 VPI2 VPI1 VPI0 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 0 12 VPI3 VPI2 VPI1 VPI0 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 0 13 VPI2 VPI1 VPI0 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 0 14 VPI1 VPI0 VCI13 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 0 15 VPI0 VCI14 VCI13 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 0 16 VCI15 VCI14 VCI13 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 1 1 VPI14 VPI13 VPI12 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 1 2 VPI13 VPI12 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI0 1 3 VPI12 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI1 VCI0 1 4 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI2 VCI1 VCI0 1 5 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI3 VCI2 VCI1 VCI0 1 6 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI4 VCI3 VCI2 VCI1 VCI0 1 7 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 1 8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 1 9 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 1 10 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 1 11 VPI4 VPI3 VPI2 VPI1 VPI0 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 1 12 VPI3 VPI2 VPI1 VPI0 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 1 13 VPI2 VPI1 VPI0 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 1 14 VPI1 VPI0 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 1 15 VPI0 VCI13 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 1 16 VCI14 VCI13 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 2 1 VPI13 VPI12 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 PN1 2 2 VPI12 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI0 PN1 2 3 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI1 VCI0 PN1 2 4 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI2 VCI1 VCI0 PN1 2 5 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI3 VCI2 VCI1 VCI0 PN1 2 6 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 7 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 8 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 9 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 10 VPI4 VPI3 VPI2 VPI1 VPI0 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 11 VPI3 VPI2 VPI1 VPI0 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 12 VPI2 VPI1 VPI0 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 13 VPI1 VPI0 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 14 VPI0 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 15 VCI13 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 2 16 VCI13 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN1 3 1 VPI12 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 PN2 PN1 3 2 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI0 PN2 PN1 3 3 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI1 VCI0 PN2 PN1 3 4 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI2 VCI1 VCI0 PN2 PN1 3 5 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 6 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 8 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 9 VPI4 VPI3 VPI2 VPI1 VPI0 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 10 VPI3 VPI2 VPI1 VPI0 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 11 VPI2 VPI1 VPI0 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 12 VPI1 VPI0 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 13 VPI0 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 14 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 15 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 3 16 VCI12 VCI11 VCI10 VCI9 VCI8 VCI7 VCI6 VCI5 VCI4 VCI3 VCI2 VCI1 VCI0 PN2 PN1 Figure 3-4 0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 LCI Building Patterns Preliminary Data Sheet 49 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 Figure 3-5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VPI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI11 VCI11 VCI11 VCI11 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI10 VCI10 VCI10 VCI10 VCI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI9 VCI9 VCI9 VCI9 VCI9 VCI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI8 VCI8 VCI8 VCI8 VCI8 VCI8 VCI8 VCI8 VPI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI10 VCI10 VCI10 VCI10 VCI10 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI9 VCI9 VCI9 VCI9 VCI9 VCI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI8 VCI8 VCI8 VCI8 VCI8 VCI8 VCI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VPI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI9 VCI9 VCI9 VCI9 VCI9 VCI9 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI8 VCI8 VCI8 VCI8 VCI8 VCI8 VCI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VPI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI8 VCI8 VCI8 VCI8 VCI8 VCI8 VCI8 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VPI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VCI7 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VPI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VCI6 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VPI3 VPI2 VPI1 VPI0 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VPI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VCI5 VPI4 VPI3 VPI2 VPI1 VPI0 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VPI3 VPI2 VPI1 VPI0 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VPI2 VPI1 VPI0 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VPI4 VPI3 VPI2 VPI1 VPI0 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VCI4 VPI3 VPI2 VPI1 VPI0 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VPI2 VPI1 VPI0 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VPI1 VPI0 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VPI3 VPI2 VPI1 VPI0 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VCI3 VPI2 VPI1 VPI0 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VPI1 VPI0 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VPI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VPI2 VPI1 VPI0 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VCI2 VPI1 VPI0 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VPI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 VPI1 VPI0 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VPI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 VCI0 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 VPI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 VCI0 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN4 PN3 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 LCI Building Patterns (cont.) Preliminary Data Sheet 50 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY In case x = 16 - MNUM x VPI (11,0) 2 - 1 ;with x = 0 for for MNUM > 0 MNUM = 0 the LCI is build by {VPI, PN} values only whereas the VPI range is given by MNUM bits. Note: Programming MNUM(3:0) = 0 is interpreted as decimal 16. The following tables provide the possible LCI building patterns for all PNUM and MNUM configurations. The resulting LCI is internally treated the same way as in the LCI cell header mapping modes, i.e. the two MSB's are checked against the quarter segment configuration that allows for cascading of up to 4 ABMP devices. Note: VPI cell header field and port number bit positions that are not mapped into the LCI are checked against `0'. Mismatches are treated as `invalid LCI' and the cell is discarded. Preliminary Data Sheet 51 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY PNUM MNUM 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 Figure 3-6 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 VPI11 VPI11 VPI11 VPI11 VPI11 13 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 VPI11 VPI11 VPI11 VPI11 VPI11 1 1 1 1 1 1 1 1 1 1 VPI10 VPI10 VPI10 VPI10 VPI10 VPI10 12 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 VPI11 VPI11 VPI11 VPI11 VPI11 1 1 1 1 1 1 1 1 1 1 VPI10 VPI10 VPI10 VPI10 VPI10 VPI10 1 1 1 1 1 1 1 1 1 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 11 1 1 1 1 1 1 1 1 1 1 1 VPI11 VPI11 VPI11 VPI11 VPI11 1 1 1 1 1 1 1 1 1 1 VPI10 VPI10 VPI10 VPI10 VPI10 VPI10 1 1 1 1 1 1 1 1 1 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 1 1 1 1 1 1 1 1 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 10 1 1 1 1 1 1 1 1 1 1 VPI10 VPI10 VPI10 VPI10 VPI10 VPI10 1 1 1 1 1 1 1 1 1 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 1 1 1 1 1 1 1 1 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 1 1 1 1 1 1 1 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 9 1 1 1 1 1 1 1 1 1 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 1 1 1 1 1 1 1 1 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 1 1 1 1 1 1 1 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 1 1 1 1 1 1 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 8 1 1 1 1 1 1 1 1 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 1 1 1 1 1 1 1 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 1 1 1 1 1 1 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 1 1 1 1 1 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 7 1 1 1 1 1 1 1 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 1 1 1 1 1 1 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 1 1 1 1 1 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 1 1 1 1 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 6 1 1 1 1 1 1 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 1 1 1 1 1 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 1 1 1 1 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 1 1 1 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 5 4 3 1 1 1 1 1 1 1 1 1 1 1 VPI3 1 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 VPI5 VPI4 VPI3 1 1 1 1 1 1 1 1 VPI2 1 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 VPI4 VPI3 VPI2 1 1 1 1 1 VPI1 1 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 VPI3 VPI2 VPI1 1 1 VPI0 1 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 VPI2 VPI1 VPI0 2 1 1 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 1 1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 LCI Building Patterns (VPI only) Preliminary Data Sheet 52 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 Figure 3-7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 1 1 1 1 1 1 1 1 1 1 VPI11 VPI11 VPI11 VPI11 VPI11 1 1 1 1 1 1 1 1 1 1 VPI10 VPI10 VPI10 VPI10 VPI10 VPI10 1 1 1 1 1 1 1 1 1 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 1 1 1 1 1 1 1 1 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 1 1 1 1 1 1 1 1 1 1 VPI10 VPI10 VPI10 VPI10 VPI10 VPI10 1 1 1 1 1 1 1 1 1 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 1 1 1 1 1 1 1 1 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 1 1 1 1 1 1 1 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 1 1 1 1 1 1 1 1 1 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 VPI9 1 1 1 1 1 1 1 1 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 1 1 1 1 1 1 1 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 1 1 1 1 1 1 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 1 1 1 1 1 1 1 1 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 VPI8 1 1 1 1 1 1 1 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 1 1 1 1 1 1 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 1 1 1 1 1 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 1 1 1 1 1 1 1 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 VPI7 1 1 1 1 1 1 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 1 1 1 1 1 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 1 1 1 1 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 1 1 1 1 1 1 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 VPI6 1 1 1 1 1 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 1 1 1 1 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 1 1 1 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 1 1 1 1 1 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 VPI5 1 1 1 1 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 1 1 1 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 1 1 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 1 1 1 1 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 VPI4 1 1 1 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 1 1 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 1 1 1 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 VPI3 1 1 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 1 1 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 VPI2 1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 PN6 1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI1 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 PN5 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 VPI0 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN4 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN3 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN2 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN1 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 PN0 LCI Building Patterns (VPI only) (cont.) Preliminary Data Sheet 53 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.2.6 Queue Congestion Indication Unit Some system implementations are based on in-system flow control mechanisms that require per queue (i.e. typically per connection) congestion indication information from the downstream queues. As an example a traffic management optimized IP over ATM implementation requires a control link between the ATM traffic management and the packet scheduling unit. Queue status information can generally be obtained by reading the Queue Configuration Table (QCT). For a large number of queues (e.g. 8k) and typical time constraints of control loop mechanisms, a software based queue monitoring is not feasible. The Queue Congestion Indication interface (QCI) is a serial interface providing a bit pattern with queue specific threshold exceed information. Each bit represents the queue number corresponding to the bit position. A `1' means congestion, i.e. the queue specific threshold is currently exceeded. The bit-pattern is generated with a minimum HDLC framing and can be limited to 1024, 2048, 4096 or 8192 bits payload depending on the number of queues that need to be monitored. Global configuration of the QCI unit is performed in register "DQCIC" on Page 187. The queue specific thresholds are programmed in table QCIT via transfer register "QCIT" on Page 244. 3.2.7 Clocking System The clocking system of the ABMP distinguishes 3 major functional clock domains. The core clock, the ERC core clock and the UTOPIA interfaces whereas each UTOPIA interface and direction (transmit/receive) is clocked independently as shown in Figure 38. The ERC core clock can be derived internally from either the SYSCLK signal or the internal core clock. Programmable DPLL's allow for a wide range of external clocks to derive the required core clocks. In addition to the major clock domains, the serial interfaces SPI and QCI are also clocked independently. Preliminary Data Sheet 54 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY UTOPIA ATM transmit Clocking System Overview UTOPIA PHY receive ABM Core Logic internal ABM core clock internal ERC unit clock UTOPIA PHY transmit ERC Unit UTOPIA ATM receive 3.2.7.1 asynchr./synchr. 'alternative ERC clock' Bypass1 Devider1 URXCLKD SYSCLK UTXCLKU DPLL1 ERCCLK ERCCLKSEL ERCFREQSEL URXCLKU UTXCLKD DPLL2 Devider1 SYSCLKSEL Bypass2 Devider2 Note: Testmodi are not illustrated in this figure. Figure 3-8 3.2.7.2 Clocking System Overview DPLL Programming DPLL1 and DPLL2 are identical function blocks with identical programming interfaces. Each DPPL features 2 factors programmed by parameters m and n in registers "PLL1CONF" on Page 296 and "PLL2CONF" on Page 298 respectively: Preliminary Data Sheet 55 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY n+1 f 2 = f in x -------------m+1 Register PLLCONFi (i=1,2) 15 0 Lockedi Dev2EniDev1Eni Bypassi PUi Mi(3:0) RESi f1 fin (1) X 1 (m + 1) f2 2..15 MHz (n + 1) X (0) fout (1) (1) (0) Figure 3-9 Ni(5:0) 1/2 X 1/2 (0) DPLL Structure The division factor determined by m must be choosen such, that intermediate frequency f1 is in the range 2..15 MHz based on the input frequency at signal `SYSCLK'. The multiplication factor determined by n must be choosen such, that intermediate frequency f2 is equal or twice the final value in case of DPLL2 and twice or 4 times the final value in case of DPLL1. Finally the division by 2 factor may be enabled in case of DPLL2 and one or two division by 2 factors in case of DPLL1 to achieve the final clock frequency. 3.2.7.3 Programming Example Following numbers are assumed for this example: * ABMP internal core clock: 80 MHz * ABMP Enhanced Rate Control (ERC) clock: 100 MHz * Clock supply: 52 MHz at signal SYSCLK In this example signal SYSCLKSEL must be connected to VSS to connect the internal core clock to the DPLL1 output. Signal ERCCLKSEL must be connected to VSS to connect the alternative ERC clock to the DPLL2 output. Signal ERCFREQSEL must be connected to VDD to connect the internal ERC core clock to the alternative ERC clock (which is DPLL2 output in this example). (Please refer to Figure 3-8) Preliminary Data Sheet 56 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY DPLL1 Programming A reasonable value for parameter M1 in register "PLL1CONF" on Page 296 is M1 = 12 which results in f1 = 52 MHz / (12 + 1) = 4 MHz. Now a possible value for parameter N1 is N1 = 39 which results in f2 = 4 MHz * (39 + 1) = 160 MHz. To achieve the 80 MHz core clock devision factor 1 shall be enabled. Thus for this example the value 3B27H must be programmed to register PLL1CONF. Note: Multiple combinations of parameters are possible to achieve a 80 MHz clock in this example. DPLL2 Programming A reasonable value for parameter M2 in register "PLL2CONF" on Page 298 is M2 = 12 which results in f2 = 52 MHz / (12 + 1) = 4 MHz. Now a possible value for parameter N2 is N2 = 24 which results in f2 = 4 MHz * (24 + 1) = 100 MHz. The devision factor shall be disabled to maintain the 100 MHz clock frequency. Thus for this example the value 1B1DH must be programmed to register PLL2CONF. Note: Multiple combinations of parameters are possible to achieve a 100 MHz clock in this example. 3.2.7.4 Initialization Phase After power-on reset, both DPLLs are in bypass mode which means that signal `SYSCLK' is directly feeding the internal core clock and internal ERC core clock. After basic configuration at least of the DPLL configuration registers, the bypass can be disabled which will glitch-free adjust the internal clocks to the selected frequency. 3.2.8 Reset System The ABMP provides 3 different reset sources as shown in Figure 3-10. The hardware signal RESET effects the entire device including the microprocessor interface. The selfclearing software reset bit `SWRES' in register "MODE1" on Page 321 effects the entire device except the microprocessor interface. The software reset bit `ERCSWRES' in register "MODE1" on Page 321 effects only the ERC unit. This bit is not self-clearing and allows the entire ERC unit to be kept in reset state while the rest of the device is working. Hardware reset as well as software reset bit `SWRES' completely initialize the device into power-on reset state. Preliminary Data Sheet 57 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY SSRAM IF SDRAM Interface (up) UTOPIA IF (PHY Side) ARC Cell Handler (CH) upstream Queue Manager (QM) ERC Scheduler Block (SB) AAL5 UTOPIA IF (Backplane Side) Test/ Clocks Cell Handler (CH) downstream ARC uP IF QCI IF RESET BSCAN/ SPI SDRAM Interface (dn) bit 15 bit 14 SWRES ERC SWRES Register 'MODE1' Figure 3-10 Reset System Overview Note: Initialization of external and internal RAMs must be started by software via command bits `INITRAM' and `INITSDRAM' in register "MODE1" on Page 321 following the device reset. 3.3 System Integration The ABMP has two operational modes: Bi-directional Mode and Uni-directional Mode. The directional terminology for the modes refers to the usage of the ABMP cores, not to the connections. The connections are bi-directional in all cases. In Bi-directional Mode, one ABMP core is used exclusively for the cells of a connection in the upstream direction and the other core exclusively handles cells of the same connection in the downstream direction. In Uni-directional Mode, only one core always will be used to handle the cells of a connection both in up- and downstream direction. The two basic applications for these modes are the switch port line card application and the mini-switch, respectively. Preliminary Data Sheet 58 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY On a typical switch port line card, both the upstream and downstream cell flow pass through the same ABMP device. One ABMP Core is used for each direction as shown in Figure 3-11. SSRAM interface UTOPIA SDRAM interface ABM Core upstream UTOPIA upstream transmit SLAVE upstream receive MASTER common LCI Table UTOPIA UTOPIA downstr. transmit MASTER downstr. receive SLAVE mP interface ABM Core downstream SDRAM interface JTAG interface Figure 3-11 ABMP in Bi-directional Mode The ABMP assumes that all connections are setup bi-directionally with the same Local Connection Identifier (LCI) in both directions. In the Infineon ATM chip set environment, the LCI is provided by the PXB 4350 E ALP and contains VPI, VCI, and PHY information. If the ABMP is not used with the ALP, it can operate on VPI or VCI identifiers only using the internal Address Reduction Circuit. In a mini-switch application, the throughput is only one times 622 Mbit/s. Only the UTOPIA Receive and Transmit interface PHY-side are active. Both ABMP Cores are selected from the multiplexer options shown in Figure 3-12. Each cell is forwarded to both ABMP Cores; but, the LCI table entry for the connection determines which of the two Cores accepts the cell. The other Core ignores it. Thus, each cell is stored and queued in one of the two Cores. The cell streams of both Cores are multiplexed together at the output. The schedulers must be programmed such that the sum of all output rates does not exceed the maximum rate supported by the UTOPIA transmit interface. Preliminary Data Sheet 59 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY SSRAM interface SDRAM interface ABM Core upstream UTOPIA UTOPIA upstream transmit SLAVE upstream receive MASTER common LCI Table UTOPIA UTOPIA downstr. transmit MASTER downstr. receive SLAVE ABM Core downstream mP interface SDRAM interface JTAG interface Figure 3-12 ABMP in Uni-directional Mode Using both Cores If the resources of one Core are sufficient, the downstream Core can be deactivated (see Figure 3-13). This reduces the power consumption and allows omission of the external downstream SDRAM. It also permits the SSRAM to be smaller (see below). SSRAM interface UTOPIA SDRAM interface ABM Core upstream UTOPIA upstream transmit SLAVE upstream receive MASTER common LCI Table UTOPIA UTOPIA downstr. transmit MASTER downstr. receive SLAVE mP interface ABM Core downstream SDRAM interface JTAG interface Figure 3-13 ABMP in Uni-directional Mode Using one Core Preliminary Data Sheet 60 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.3.1 LCI Translation in Mini-Switch Configurations In Uni-directional applications, the ABMP can be programmed to make a minimum header translation. This is necessary in a Mini-Switch configuration as both the forward and backward direction of a connection traverse the devices in the same direction. The OAM functions in the ALP or AOP device need the same LCI for forward and backward direction of a connection. This is clarified by the example shown in Figure 3-14 in which a connection is setup from PHY1 to PHY2. VPI/VCI1 is the identifier on the transmission line where PHY1 is connected. The terminal sends ATM cells with this identifier and expects cells in the backward direction from PHY2 with the same identifier. The ALP in the upstream direction translates VPI/VCI1 into LCI1, the unique local identifier for this connection in the upstream direction. Similarly, for the backward connection from PHY2 to PHY1, the ALP receives ATM cells from PHY2 with the identifier VPI/VCI2 and translates them into LCI2. C U d ec o a odes ABM (uni-directional mode) VPI/VCI1 Cores LCI1 Phy 1 HT LCI1 LCI2 ALP LCI2 AOP LCI1 HT LCI1 LCI2 LCI2 LCI= LCI+/-1 Phy 2 VPI/VCI2 HT = Header Translation LCI = Local Connection Identifier Figure 3-14 Connection Identifiers in Mini-Switch Configuration For minimum complexity, the header translation of the ABMP is done by inverting the Least Significant Bit (LSB) of the LCI. This measure divides the available LCI range into two parts: odd LCI values for forward connections and even LCI values for backward connection (or vice-versa), i.e. it reduces the available number of connection identifiers to 8192, because two LCI values are used per connection. Preliminary Data Sheet 61 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY This is not a restriction in the case of arbitrary address reduction modes as, for example, the ALP with the CAME chip, as ATM connections are always setup bi-directionally with the same VPI/VCI in both directions of a link. Note: In case of fixed address reduction, as, for example, the ALP with the built-in Address Reduction Circuit (ARC), the usable LCI range may be seriously restricted, depending on the PHY configuration. Preliminary Data Sheet 62 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.4 Detailed Queue Manager and Scheduler Block Description This chapter provides more detailed information about scheduling and queuing (cell acceptance) functions. Scheduler Block Scheduler 1 Scheduler 2 Scheduler j R R (1) accept W F Q (2) MUX Cell Acceptance Algorithm DEMUX Queue Manager discard R R (3) Scheduler 15 Scheduler 16 Denotes an optional per queue Peak Rate Shaper (PCR) Denotes an absolute per scheduler rate Figure 3-15 Cell Acceptance and Scheduling 3.4.1 The Scheduler One of the basic building blocks of the ABMP is the scheduling unit that serves as a coprocessing unit to the Queue Manager. A single scheduler entity is a cascade of two multiplexer levels. A Weighted Fair Queuing (WFQ) Multiplexer and two Round Robbin (RR) Multiplexers built the first level aggregating to a second level priority multiplexer as shown in Figure 3-16. An arbitrary number of queues can be assigned to each first level multiplexer. Preliminary Data Sheet 63 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Scheduler #j Real-Time Traffic w0 w1 w2 W w3 F Q Non-Real-Time Traffic scheduler output rate Low Priority Non-Real-Time Traffic wi: WFQ Weight Factor optional PCR or VBR Shaper Figure 3-16 Scheduler Structure One RR scheduler is provided for real-time connections. It is connected to the highest priority input of the Priority Multiplexer (marked with the arrow symbol). The 3-input Priority Multiplexer first accepts cells from the high-priority input and only if there is no cell offered it continues looking for the WFQ multiplexer connected with the second priority. Thus, real-time traffic is always prioritized. As the output rate of the Scheduler is limited - as denoted in Figure 3-16 with the bubble symbol at the Priority Multiplexer output - the non-real-time connections share the remaining bandwidth. This behavior is shown in Figure 3-17. The low priority round robbin multiplexer is only served in case neither realtime nor the WFQ offers a cell within a cell cycle. Preliminary Data Sheet 64 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY bandwidth output rate non-real time connections (low priority) real time connections (high priority) Figure 3-17 Scheduler Behavior The WFQ multiplexer permits sharing of the remaining bandwidth by the non-real-time connections. The WFQ multiplexer has a maximum of 8192 inputs with a weight factor assigned to each input. It distributes the remaining bandwidth among active or occupied queues according to the weight factors. The WFQ multiplexer has the following properties: * Fair distribution of bandwidth * Guaranteed Quality of Service (QoS) for each connection (minimum service rate, bounded delay) * Load conserving, that is, the output is always 100% * Protection against misbehaving connections (exceeding their bandwidth budget). These are important, for example, in data connections having start-stop behavior. An example is shown in Figure 3-18. The duration of the data bursts and the idle periods vary over a wide range. bit rate time Figure 3-18 Data Traffic Example For non-real-time connections, normally one queue is assigned to each connection, that is, per-VC queuing. During idle periods, the queues will run empty, and, when a data burst is sent, they fill up again. The WFQ multiplexer automatically deals with the varying Preliminary Data Sheet 65 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY load situations and always distributes the bandwidth according to the weight factors. An example of a Scheduler with one real-time queue (Queue 1) and nine non-real-time queues (Queue 2 through Queue 10) is shown in Figure 3-19. Queue 1 is shared by a number of connections with different bit rates. spare bandwidth 10 9 8 7 6 10 9 8 7 9 6 6 5 4 3 2 5 4 3 2 1 1 connection setup with guaranteed cell rates 7 Scheduler bandwidth 1 not reserved bandwidth distributed real time traffic unused bandwidth distributed Figure 3-19 Scheduler Behavior Example The left column in Figure 3-19 shows the Scheduler load as seen from Connection Acceptance Control (CAC). New connections are accepted as long as their guaranteed rates fit the spare bandwidth of the Scheduler. "Guaranteed rate" is defined below. The center column shows the case in which all Queues 2..10 are filled; that is, all nonreal time connections are sending data. The total non-real-time bandwidth, including the spare bandwidth, is then distributed to the 9 queues according to their weight. In this case, two weight factors are defined, 1 and 10. The right column shows the case of only three queues (6, 7 and 9) filled; all other connections are not sending data at this time. Again, the available bandwidth is fairly distributed among the queues, still conserving the 1:10 ratio defined by their weights. Notice that bandwidth of the real-time connections is not affected by bandwidth re-adjustments; but, remains constant over time under the assumption that real-time connections are constantly sending data. If, however, a real-time connection should not use its bandwidth, the bandwidth would be used immediately by the non-real-time connections. The behavior shown in Figure 3-19 of the WFQ Multiplexer for non-real-time connections has advantages for both the network operator and for the end user: Preliminary Data Sheet 66 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY * The available bandwidth is always used completely, resulting in optimum usage of transmission resources * A user paying for a higher guaranteed rate also obtains higher throughput under all load conditions. Guaranteed Rate The guaranteed rate is the rate which the network must guarantee the user at any time. Table 3-1 Guaranteed Rates for each Traffic Class Traffic Class Guaranteed Rate CBR PCR VBR-rt SCR...PCR VBR-nrt SCR ABR MCR UBR+ MCR UBR none 3.4.2 Comment Guaranteed rate can be chosen below PCR for statistical multiplexing gain (CCR in ABR VS/VD) Guaranteed rate is always > 0 with queue connected to the WFQ multiplexer Scheduler Usage The ABMP chip allows arbitrary assignment of connections to queues and of queues to Schedulers. A Scheduler can be assigned to any UTOPIA PHY. Usage of a Scheduler differs in switch input (ingress) or output (egress). For the Mini-Switch application the ingress case does not exist. At a switch output, the Schedulers provide constant cell streams to fill the payloads of the PHYs. Either the entire cell stream of a PHY is provided or it is disassembled into several VPCs as shown in Figure 3-20. A VPC may contain both real-time and data connections. This is the case for a VPC which connects two corporate networks (virtual private networks), for example. The scheduler concept has the advantage that data traffic is automatically adjusted after setup or teardown of a real-time connection. The output rate of a Scheduler in both applications is usually constant. The schedulers always react to UTOPIA backpressure or can be controlled completely by backpressure instead of shaping. All Schedulers whose physical outputs are asserting backpressure are hold on serving. Scheduler serving time slots which are lost due to temporary backpressure are maintained and served later, if possible. Therefore, the rate with some CDV will be maintained. The maximum number of stored time slots which can be configured is equal to the maximum burst possible for that port or path. Preliminary Data Sheet 67 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Switch Fabric* PHY 1 Switch Port (ABM) PHY bottleneck 155 Mbps PHY n VPC1 bottleneck VPC2 bottleneck * no Switch Fabric for Workgroup Switch PHY 155 Mbps = Scheduler Figure 3-20 Scheduler Usage at Switch Output At a switch input, each Scheduler is assigned to a switch output (Figure 3-21). A switch with n ports needs n2 Schedulers. The output rate of each Scheduler is re-adjusted continuously to obtain maximum switch throughput without overloading the switch port output rate. This principle is called Preemptive Congestion Control, that is, congestion due to overload is avoided. Preliminary Data Sheet 68 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Port 1 (ABM) Switch Fabric Port 1 R1,1 Rn,1 Port n switch egress port bottleneck 622 Mbps Port n R1,n Rn,n switch egress port bottleneck 622 Mbps Ri,j = Rate from Port i to Port j switch ingress port bottlenecks 622 Mbps = Scheduler Figure 3-21 Scheduler Usage at Switch Input There are three options for Scheduler rate adjustment: * After each connection setup or teardown (static bandwidth allocation). * Dynamic bandwidth allocation using Input Scheduler Buffer fill information to assign Scheduler rates dynamically. * Backpressure controlled. Preliminary Data Sheet 69 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.4.3 Quality of Service Class Support As well as rate guarantees, the support of Quality of Service (QoS) classes (Traffic Classes) is related closely to the threshold-based cell acceptance algorithm. One set of thresholds for each QoS class is programmed in the traffic class table (see also Figure 3-23). The ABMP provides 16 sets of traffic classes per direction. Each traffic class can be configured according to the required behavior and is not pre-defined or fixed to the standard ATM service classes. This allows for configuration of generic or new service classes (e.g. Packet Hop Behavior classes). The traffic class table contains the following thresholds (please refer to "Threshold Overview" on Page 72 for a numeric desription of the thresholds): 1. Maximum non-real time cells in the entire buffer 2. EPD threshold for non-real-time cells in the entire buffer 3. Multi purpose threshold A) Maximum stored cells in each queue of this traffic class (if EPD disabled) or B) The EPD threshold for each queue of this traffic class (if EPD enabled) 4. Multi purpose threshold A) Threshold for each queue of the traffic class where the Congestion Indication (CI) for ABR traffic is set and B) Threshold where low priority cells (CLP=1) are not accepted (if the CLP transparent flag CLPT is set for the connection) C) Queue EPD threshold for GFR (CLPT is false). EPD is triggered if both thresholds 4C and 2 are exceeded. 5. Threshold for the maximum number of cells of this traffic class that can be buffered 6. Multi purpose threshold for the scheduler occupancy A) maximum number of cells in the scheduler if EPD not enabled or B) EPD threshold for cells in the scheduler if EPD enabled or C) ABR congestion indication (EFCI, CI) if ABR is enabled Note: All maximum thresholds are automatically also PPD thresholds, that is, if the maximum fill value is reached, PPD is started if enabled. If PPD is not enabled, cells are discarded if the threshold is reached. Also a configurable hysteresis is applied to all maximum thresholds if PPD is not enabled. Figure 3-22 shows the independent assignment of queues to traffic classes and schedulers. Because schedulers fulfill the logical switching function by assignment of schedulers to UTOPIA ports, they are independent of the QoS class represented by the traffic class table. Preliminary Data Sheet 70 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Scheduler 1 W F Q d e m u x Scheduler 48 W F Q Traffic class 1 Traffic class 2 Traffic class 16 Figure 3-22 Queue Grouping Examples of traffic classes are * Real-time traffic * LAN emulation traffic * Internet (IP) traffic Figure 3-23 shows an example of threshold configurations for four traffic classes. Total Buffer Size VBR PPD = Buffer Size-256 guaranteed 256 cells for real time guaranteed buffer space for VBR ABR PPD new ABR packets are not accepted ABR EPD guaranteed buffer space for ABR+VBR UBR PPD UBR EPD buffer fill new UBR packets are not accepted 4 traffic classes: UBR, ABR, VBR, real time Figure 3-23 Example of Threshold Configuration Preliminary Data Sheet 71 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.4.4 EPD/PPD Handling These functions can be enabled individually per traffic class. The dynamic flags of these functions are stored in the connection specific (LCI) table. For both functions, the ABMP looks at the PTI bit of the ATM cells to determine the packet borders. EPD Threshold Behavior If the buffer fill level exceeds an EPD threshold and EPD is enabled, new packets will not be accepted but will be discarded completely. Cells belonging to packets which have been transmitted partially are accepted. PPD Threshold Behavior If the cell fill exceeds a PPD (=max) threshold, the next cell is discarded and, if PPD is enabled, all subsequent cells of the packet are discarded except the last cell. The subsequent cells are discarded even if the cell fill might have dropped below the PPD threshold in the meantime. The last cell is accepted again to convey the discard information to the terminal (cell acceptance is possible only if the queue fill level dropped below the threshold in the meantime). By checking the CRC-32 checksum of AAL5, the terminal can determine rapidly that cells were lost and can immediately ask for retransmission. Otherwise, the terminal would need to wait for a time-out. 3.4.5 Threshold Overview The different threshold types are listed in Table 3-2. The following is a short description of each type: A) Discard Thresholds 1. Total Buffer Threshold Limits the total buffer size per ABMP core (maximum 256k cells per ABMP direction) depending on the RAM configuration. 2. Maximum Fill Threshold This threshold has two possible modes, a basic mode (cell discard) or a selective mode (Partial Packet Discard = PPD). Basic mode: The maximum amount of storable cells without PPD and EPD function i. e. the respective physical storage area. Each cell which exceeds that threshold is discarded. If in the meantime the storage area fill level falls below that threshold the next arriving cell is accepted again. Selective mode: Every time a cell discarding occurs and PPDen='1' applies for the traffic class of this cell, then also the remaining cells of this packet are discarded (beside non-user cells Preliminary Data Sheet 72 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY and the last cell of the packet). For simplification this selectable PPD behavior of the maximum fill threshold is denoted as PPD threshold in the remaining document. 3. PPD Threshold It is the maximum fill threshold in case of the selective mode (see 2. under Maximum Fill Threshold) and acts like an "emergency brake". The exceeding cell and all subsequent cells (besides non-user cells and the last cell of this packet) of this packet are also discarded if the fill level falls below that threshold in the meantime. The PPD threshold is intended to be used for VBR-nrt, ABR, GFR and UBR. 4. Maximum Fill Threshold (CLP=1) Acts like a normal maximum fill threshold but exclusively discards cells with CLP='1'. 5. EPD Threshold This is used for overload protection against bursty data traffic and so it is a "normal" threshold for data traffic. Global buffer EPD threshold BufNrtEPD is intended to be used for traffic classes which are not already policed (e.g. ABR, GFR and UBR). 6. EPD CLP1 Threshold for GFR Acts like a normal EPD threshold but with the difference that it is a global threshold that triggers EPD for CLP1 frames (not for CLP1 cells !) used by GFR service. Note: Cell discarding of EPD and PPD thresholds does not apply to non-user cells, e.g. an OAM cell in a packet is not discarded. B) Indication Thresholds 1. ABR CI Threshold (applies to binary marking scheme of queue manager only) This is used to indicate congestion state to ABR connections (ABRen='1') on a global buffer, scheduler and queue basis. By exceeding one or a combination of these thresholds EFCI, NI and CI bits of user cells and RM cells are set appropriately. NI is set in a slightly congested situation. NI and CI are set in a congested situation. 2. Low Prority / High Priority Scheduler Indication Thresholds If the scheduler low and high priority buffer occupation exceeds the respective thresholds the corresponding threshold crossing indication bits for this schedulers are set to '1' and related interrupts generated in "ISRDBA" on Page 315. C) Backpressure Thresholds 1. UTOPIA Backpressure Thresholds These thresholds (4 in upstream and 4 in downstream) are global thresholds with respect to the cell buffer fill level and result in backpressure of specific port groups of the respective UTOPIA receive interface. 2. Queue Congestion Indication Thresholds These per queue thresholds generate a queue specific congestion indication that is provided to the QCI interface and translated into a serial bit pattern to be processed by external devices. Preliminary Data Sheet 73 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY The following Table 3-2 gives an overview of all thresholds. For each arriving cell all conditions in this table are checked. Several thresholds may be exceeded. Note: According to the cell acceptance algorithm of the ABMP, all threshold types are evaluated at each cell arrival event, independent whether the individual threshold is actually used or not by the traffic class to which the cell belongs. Therefore Table 3-2 is no truth table! For instance, if the maximum fill threshold of UBMTH/ DBMTH is scanned then all bits (ABRen..CLPT) are don't care as the ABMP checks this threshold by ignoring the values of these bits (hence e.g. PPDen can be '1' as the value of PPDen is ignored during the scan of the basic mode of the maximum fill threshold). Until if the selectable mode of the maximum fill threshold (i.e. the PPD threshold) is scanned, the ABMP checks the value of the bit PPDen and all other bits are don't care (according to Table 3-2). . Global Buffer Compare Values Threshold Type ABRen EPDen PPDen CLPT CLP Reg UBMTH DBMTH UBOC DBOC Total cell buffer size 4 x x x x x TCT BufMax UNRTOC DNRTOC Maximum threshold 1024 x x x x 0/1 PPD threshold 1024 x x 1 x 0/1 LCI Table Threshold Granularity Traffic Class Table Settings to enable Threshold effected Cells Threshold Overview Table Location Controlled Logical Buffer Entity Table 3-2 TCT BufEPD UNRTOC DNRTOC EPD threshold 1024 x 1 x 0 0/1 TCT BufCiCLP1 UNRTOC DNRTOC ABR CI threshold 1024 1 x x x 1/0 EPD CLP1 threshold 1024 0 1 x 0 1 UBOC DBOC UTOPIA receive backpressure threshold 4 x x x x x 4 x x x x x Reg UUBTH0 DUBTH0 Reg UUBTH1 DUBTH1 Reg UUBTH2 DUBTH2 4 x x x x x Reg UUBTH3 DUBTH3 4 x x x x x Preliminary Data Sheet 74 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Scheduler CLPT CLP effected Cells PPDen SBMax SBOCNG Maximum threshold 1024 x x x 0 0/1 PPD threshold 1024 0 0 1 x 0/1 EPD threshold 1024 0 1 x x 0/1 ABR CI threshold 64 1 x x x 0/1 PPD CLP1 threshold 64 0 0 1 x 1 EPD CLP1 threshold 64 0 1 x x 1 SBCiCLP1 SBOCNG Traffic Class Table Settings to enable Threshold LCI Table Threshold Type Granularity Compare Values EPDen TCT Reg CLP1DIS SBOCLP CLP1 discard threshold 64 x 0 x x 1 Reg DSBT1 x x x x DSBT2 SB low priority/ high priority threshold crossing indication 16 Reg SBOCLP, SBOCHP SBOCLPd 16 x x x x Reg DSBT3 16 x x x x Reg DSBT4 16 x x x x 0 for HP, 1 for LP TCT TrafClassMax Maximum threshold 1024 x 0 x x 0/1 PPD threshold 1024 x 0 1 x 0/1 EPD threshold 1024 x 1 x x 0/1 Maximum threshold - x x x x 0/1 PPD threshold - x x 1 x 0/1 Maximum threshold 64 x 0 x x 0/1 PPD threshold 64 x 0 1 x 0/1 EPD threshold 64 x 1 x x 0/1 const TCT Queue Threshold ABRen TCT Traffic Class Threshold Overview Table Location Controlled Logical Buffer Entity Table 3-2 TrafClassOcc Ng max. queue length 16383 QueueMax QueueLength QCT MinBG QueueLength Minimum threshold 1, 8 x x x x 0/1 TCT QueueCiCLP1 QueueLength Maximum threshold for CLP1 cells 4 0 x x 0 1 PPD threshold 4 0 1 x 0 1 EPD threshold 4 1 x x 0 0/1 ABR CI threshold 4 1 x x x 0/1 Agenda: The flags in columns "Traffic Class Table Settings to enable Threshold" indicate the traffic class settings required to make the threshold effective during cell acceptance algorithm for a cell (connection) determined to belong to that traffic class. An `x' means don't care, i.e. the flag has no effect on the threshold. The same applies to flag "CLPT" which is a connection specific setting in the LCI table. The column "effected cells" indicate whether the threshold effects CLP0, CLP1 or all cells. Preliminary Data Sheet 75 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.4.6 Statistical Counters The ABMP device provides several statistical counters for maintenance purposes. Global Counters: * Total stored cells upstream and downstream * Total stored non-real-time cells upstream and downstream Per Traffic Class Counters: * * * * * Accepted packets Discarded packets or discarded CLP = 1 cells Total discarded cells Discarded cells due to scheduler overflow Discarded cells due to traffic overflow In addition, two types of sample-hold registers are provided: * Minimum buffer occupancy value since last readout upstream and downstream * Maximum buffer occupancy value since last readout upstream and downstream 3.4.7 Supervision Functions 3.4.7.1 Cell Header Protection To guarantee that the cell header is not corrupted by the external SDRAM, it is protected by a 8-bit interleaved parity octet. It extends over the 5-octet standard header including the UDF1 octet. The BIP-8 octet is calculated for all incoming cells and stored at the place of the UDF2 octet. When a cell is read out, the BIP-8 is calculated again and is compared with the stored BIP-8. In case of a mismatch, an interrupt is signaled and the cell is discarded or not, depending on the configuration. Note: Due to the usage of the UDF2 field for the BIP-8, the UDF2 octet is not transparent through the ABM. 3.4.7.2 Cell Queue Supervision The queuing of cells in the ABMP is implemented mostly by pointers. To detect pointer errors, the number of the queue in which the cell is stored is appended to the cell in the external cell storage SDRAM. When the cell is read out later, the selected queue number is compared to the QID stored with the cell. In case of a mismatch, an interrupt is signaled. 3.4.8 DBA Threshold Indication Mechanism (For future document version.) Preliminary Data Sheet 76 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.4.9 VC-Merge and Dummy Queue Description Any queue can be configured (mutual exclusive) for participating in a VC-merge group or being a `dummy queue'. A `dummy queue' is always served according to its associated rates and parameters independent of whether the queue stores cells or not. The dummy queue feature can be used for bandwidth reservation e.g. for subsequent multicast operation or any other cell insert/multiplier process. A detailed description of enabling/disabling those special queue functions is provided in the description of "Queue Configuration Table Transfer Registers QCT0..6" on Page 219. 3.4.9.1 VC-Merge Any queue can be configured to be member of one of the 128 merge groups in the QCT via "Queue Configuration Table Transfer Registers QCT0..6" on Page 219. Assigning a queue to a VC-merge group already enables the packet boundary aware scheduling of all queues within the same group. Optionally the ATM cell header may be overwritten with a new value programmed in the MGT via "Merge Group Table Transfer Registers MGT0..MGT2" on Page 235. A queue is released from its VC-merge group by resetting bit `QIDvalid'. 3.4.9.2 Dummy Queue A queue can be configured as a `dummy queue' and de-activated respectively via bits `DQac' and `RSall' in "Queue Configuration Table Transfer Registers QCT0..6" on Page 219. A `dummy queue' (in contrast to a normal queue) is always scheduled independent of whether cells are currently stored in the queue or not. Examples for `dummy queue' configurations are bandwidth reservation for * insertion of out-of-rate OAM cells or signalling packets, * subsequent multicast/dualcast functions. Preliminary Data Sheet 77 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.5 Detailed ERC Description 3.5.1 ERC Unit Overview The following illustration provides an overview of the ERC sub-system: Message Interface ext. Context RAM RAM AVT (Context RAM) Processor SCAN ABMP Core Code RAM ROM Mail Box SPI (shared) uP-IF ext. EEPROM Figure 3-24 ERC Unit Sub-System The central function blocks of the ERC sub-system are the processor running the ABR state machines and the AVT context table storing all connection specific parameters. The SCAN unit next to the AVT table enforces all time-out related parameters by generating time-out notifications. During initialization the Code RAM is either loaded from the internal ROM or via the SPI interface from an external serial EEPROM device. Communication with the ABMP core (RM cell insert/extract, queue information, rate update messages, cell emit events) is handled by the message interface. The ERC subsystem shares the uP interface with the ABMP core. Communication with an external Preliminary Data Sheet 78 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY microprocessor (e.g. extended context RAM access) is performed via a mailbox while access to the main context table AVT is possible via dedicated transfer registers. 3.5.2 ERC Unit Functional Overview Available Bit Rate service ABR is the only traffic type with dynamic adaptation of the transmission rate according to the currently available bandwidth. It uses an ATM layer control loop using special Resource Management RM cells to convey bandwidth information along a connection's path thru the network. The RM cells are inserted in regular intervals by the source of a connection - usually the terminal. At the end of the connection the receiving terminal loops the RM cells back to the source. All the switches/ bottlenecks on the way update the Explicit Rate (ER) field of the cells, so that the sender knows the optimum current transmission rate. Reducing the rate to the value determined by the smallest bottleneck in the network leaves unused bandwidth to all other links. It can be used by other ABR connections as shown in the example of Figure 3-25, where four connections with different source and destination points are traversing four switches. Assume e.g. that connection 4 is severely restricted in Switch 4 then additional bandwidth is released in Switch 2 which can be used by the other connections. D1 S1 Switch 1 Switch 2 D3 Switch 3 Switch 4 S3 D4 S2 S4 D2 S1..S4 = Connection Sources D1..D4 = Connection Destinations Figure 3-25 Example Network Configuration ABR behavior is described with several options by the Traffic Management Specification [] of the ATM Forum by complex descriptions of source, destination behavior and the switch behavior. The implementation of the switch behavior is mainly left to the manufacturer; it is implicitly stated that the switch should update the RM cells in such a way that no cell losses occur. Source and destination behavior normally occur in terminals only, but there is an option to realize virtual source (VS) and virtual destination (VD) behavior in a switch as described below. Preliminary Data Sheet 79 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY The options for switch behavior are shown in Table 3-3 with increasing complexity from top to bottom. Table 3-3 ABR Support of ABM v1.1 vs. ABMP Switch behavior Description ABM v1.1 ABMP EFCI marking Setting the PT bits in the user cell header yes to "congestion experienced" yes Relative rate marking Setting CI and/or NI bits of forward or backward RM cells to 1 (binary feedback) yes yes Explicit rate marking Reducing the ER field of forward or backward RM cells no yes Reactive switch behavior Explicit rate marking and additional no reduction of the transmission rate of user cells to the ER yes VS/VD control Segmentation of the ABR control loop using a virtual source and destination yes Source adjust ACR Switch E set PTI Switch EFCI marking user and RM cell flow RM cell flow Destination Switch E adjust ACR update RM Source and sink RM cells no Relative rate or explicit rate marking E update RM Reactive switch control E update RM Turn-around RM cells Note: in case of EFCI switches only the RM cells are generated at the destination Figure 3-26 ABR Mechanisms Preliminary Data Sheet 80 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.5.3 Explicit Rate Marking 3.5.3.1 Rate Parameters Using Explicit Rate Marking the sending rate of a source is permanently adjusted to varying network load conditions. An example of rate variation over time of an Explicit Rate controlled ABR connection is shown in Figure 3-27. Along with this figure the different rates are explained, with text in blue relating to the realisation in the ABMP: * PCR (Peak Cell Rate) is the upper bound for ACR and may never be exceeded. It is constant for each connection and may be supervised by policing. * MCR (Minimum Cell Rate) is the lower bound for ACR; constant for each connection. The souce may send at any time with MCR, hence this rate must be guaranteed by the network all the time. The explicit rate ER carried in the RM cells never assumes values below MCR. The ABMP guarantees the minimum service rate when per-VC queuing is used and the appropriate weight factor is set for the queue. Also connection acceptance control (CAC) must assure that no overbooking occurs. * ACR (Allowed Cell Rate) is computed by the source according to the rules 1, 2, 5, 6, 8 and 9 of section 5.10.4, Source Behavior, of ATM Forum TM4.1. The ABMP supports ABR service with per-VC queuing and with the peak rate limiter for the queue enabled. The ACR is programmed to the peak rate limiter. * ICR (Inititial Cell Rate) is the value of ACR at init time of a connection and after a long inactive time; defined by the global constant ADTF (ACR Decrese Time Factor). * The Sending Rate of the source must never exceed ACR, but may stay below it. Preliminary Data Sheet 81 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY PCR ACR 1 ICR sending rate 4 MCR 2 3 Legend: PCR = Peak Cell Rate MCR = Minimum Cell Rate ACR = Allowed Cell Rate ICR = Initial Cell Rate ADTF = ACR Decreas Time Factor (default 0.5 sec) The dashed line indicates the true sending rate of the source The numbers in circles denote special cases which are explained in the text ADTF Figure 3-27 Example Behavior of an Explicit Rate controlled ABR Connection Some special situations are pointed out in Figure 3-27, denoted with numbers in circles. These are explained below, again using blue color for ABMP related issues: 1. The sending rate remains below ACR. The reason for this could be that the connection is restricted at some other point in the network or even within the source. In such a case the unused bandwidth will be consumed after some time by other connections. The WFQ multiplexer of the ABMP distributes bandwidth immediately among used queues according to their weight. No bandwidth is lost as long as a at least one single queue is not empty. 2. Same as 1 with the sending rate dropping below MCR. 3. The sender stops transmitting data. After some time the ACR is reduced to MCR. 4. After the timeout defined by ADTF the connection is allowed to start with ICR, i.e. ACR is set to ICR. 3.5.3.2 Other Parameters The ABR implementation in the ABMP uses global (configurable) values for those parameters which have recommended default values in the standard: Preliminary Data Sheet 82 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Table 3-4 Parameter Default Value Description Nrm 32 Number of user cells between two in-rate FRM cells; Trm 100 ms After Trm the next FRM cell is generated if at least two inrate cells (user or BRM) have been sent; ADTF 500 ms Timeout of a connection; if no user cells are received for this time the connection is considered inactive and has to restart with ICR; Mrm 2 Controls the bandwidth allocation between RM cells and user cells: minimum 2 user cells must be transmitted between two consecutive FRM cells; TCR 10 cells/s Tagged cell rate: controls insertion of out-of-rate FRM cells The parameters Nrm and Mrm together with source rule #3 lead to the sequence of user and RM cells shown in Figure 3-28. This picture also explains the definition of in-rate and out-of-rate cells together with Table 3-5: Table 3-5 In-rate and out-of-rate Cells Cell type User cells FRM cells BRM cells CLP Within ACR In-rate yes yes yes 0 yes Out-of-rate not allowed yes yes 1 no In the ABR implementation of the ABMP BRM cells are inserted within the ACR if option 1 is selected (option 2 is not supported) for the turn-around of RM cells. The additional rate of 10 cells/s should be taken into account when reserving the MCR. When the cell interarrival distance T at the actual sending rate is very small compared to Trm the cell sequence will be: * one in-rate FRM cell * optionally one in-rate BRM cell (if there is one to be turned around) * 30 user cells (31 in case there is no BRM cell to be turned around) and the TRM timeout will never happen. If, however, only a few cell slots fit into the TRM interval the timeout event will occur before 30 user cells have been transmitted. Preliminary Data Sheet 83 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY FRM cell BRM cell out-of-rate BRM cell user cell 1/rate in-rate cells Mrm = 2 in-rate cells Nrm = 32 in-rate cells out-of-rate cells Trm = 100 ms Figure 3-28 RM and User Cell Sequence: General Case The worst case that only one user cell is transmitted in each FRM cell cycle is shown in Figure 3-29, where the cell sequence is * one in-rate FRM cell * one in-rate BRM cell (let's assume there is one to be turned around) * 1 user cell. FRM cell FRM cell BRM cell BRM cell user cell 1/rate in-rate cells = 2 in-rate cells out-of-rate cells Trm = 100 ms Figure 3-29 RM and User Cell Sequence: worst Case Table 3-6 Bandwidth Efficiency Range of T Edge Rate [cells/s] Edge Rate [kbit/s] Trm/3 < T RM cells / user cells Bandwidth Efficiency 2/1 33.3% Trm/4 < T =< Trm/3 30 12.72 2/2 50% Trm/5 < T =< Trm/4 40 16.96 2/3 60% : : : : : Trm/31 < T =< Trm/30 300 127.2 2/29 93.55 T =< Trm/31 310 131.44 2/30 93.75 Preliminary Data Sheet 84 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Bandwidth Usage 100,00% 80,00% 60,00% 40,00% 20,00% 0,00% 0 20 40 60 80 100 120 140 kbit/s Figure 3-30 Capacity Usage of ABR VCs 3.5.4 Reactive Switch Behavior Reactive Switch control is an extension to the Explicit Rate operation. A switch with RSC behavior enabled is supposed to adjust the connection specific rates to the current explicit rate value copied from the BRM cells (see Figure 3-27). 3.5.5 VS/VD Behavior The VS/VD behavior is basically the source and destination behavior. The VS/VD source behavior performs two different tasks: * Multiplexing user cells, forward RM cells (FRM) and backward RM cells (BRM) * Adjustment of the allowed cell rate ACR (Current Cell rate (CCR)). Multiplexing user cells and FRM cells means that after each 32 (default) user cells a FRM cell is inserted. But also turned-around FRM cells must be inserted as BRM cells for the associated opposite direction of the connection. One BRM cell is allowed to be inserted between two FRM cells. In case of asymmetrical data rates of the two opposite directions - one direction might have user cell rate zero for some time - various scenarios can occur; e.g. it could be possible that due to the absence of user cells no FRM cells are Preliminary Data Sheet 85 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY generated and accordingly also no BRM cells. Several options are given by the standard to cope with special cases. Adjustment of ACR is basically using the ER conveyed in the BRM cell as new sending rate. However, as the standard work at ATM Forum has been accompanied by extensive simulations a bunch of parameters has been introduced in oder to avoid overflows, deadlocks or oscillations in the network. These give further constraints for ACR * ACR must stay between MCR and PCR * in the absence of received BRM cells the source assumes heavy congestion in the network and reduces ACR by a factor. Finally the ACR is not identical to the actual sending rate: In the implementation the ACR is programmed to the peak rate limiter of a queue. Then the rule is fulfilled that the actual sending rate shall never be higher than ACR. If the queue is served at a lower rate than ACR - due to many other active queues - the unused bandwidth will be consumed by the network ("use-it-or-lose-it" principle). Using the WFQ multiplexer assignment of an appropriate weight assures that ACR is not falling below MCR. The VS/VD destination behavior is basically converting the received FRM cells into BRM cells and conveying them to the virtual source. Optionally the destination may also reduce ACR. The received BRM cells are evaluated and the ACR is conveyed to the source. Preliminary Data Sheet 86 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY ABR VC_f FRM_f BRM_b E BRM_b adjust FRM_b FRM_f adjust E BRM_f BRM_f FRM_b ABR VC_b ABR segment 1 Legend: ABR VC_f = ABR connection in forward direction ABR VC_b = ABR connection in backward direction FRM = forward Resource Management cell BRM = backward Resource Managment cell ABR segment 2 Notes: * per-VC queues separate rates in both ABR segments * serving rates of queues dynamically adjusted = Virtual Source E = Virtual Destination = Queue with peak rate limiter Figure 3-31 VS/VD Cell Streams In a switch the VS/VD function is distributed as shown in Figure 3-32. Preliminary Data Sheet 87 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Line card with ABM Line Card with ABM VD VS VS VD ABR VC_f FRM_f BRM_b E adjust FRM_b BRM_f BRM_b E FRM_f adjust BRM_f FRM_b ABR VC_b ABR segment 1 No ABR Protocol ABR segment 2 Figure 3-32 Distribution of VS/VD Function in a Switch 3.5.6 ERC Mailbox (For future document version.) Preliminary Data Sheet 88 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.6 Internal Tables 3.6.1 Table Overview The ABMP provides a set of internal tables for configuration and runtime parameters. The tables are accessed by the microcontroller via control registers, data transfer registers and mask registers. While the control registers "MAR" on Page 317 and "WAR" on Page 319 are common to all tables (except SCTI tables), sets of mask registers are dedicated or shared among some tables. Data transfer registers are always dedicated to the specific table. The following illustration gives an overview of all (user accessible) tables and related control/transfer/mask registers: Preliminary Data Sheet 89 2001-14-01 Prel. ABMP Data Sheet Functional Description Data Transfer Registers Mask Registers PRELIMINARY LCI Table TCT Table MAR = 00d MAR = 01d Common Mask Register Set: LCI0 LCI1 LCI2 MASK6 TCT0 TCT1 TCT2 TCT3 QCT Table SOT Table MGT Table MAR = 02d MAR = 03d MAR = 07d MASK5 MASK2 MASK4 MASK1 QCT0 QCT1 QCT2 QCT3 QCT4 QCT5 QCT6 SOT0 SOT1 SOT2 SOT3 SOT4 QCI Table DTC Table MAR = 08d MAR = 05d MASK3 MASK0 no Mask no Mask MGT0 MGT1 MGT2 QCIT DTCT Common Table Access Control Registers: Mask Registers Data Transfer Registers MAR WAR ERCT1 ERCT0 UQPT1T1 UQPT1T0 ERCM1 ERCM0 UQPTM3 UQPTM2 AVT Table MAR = 10d QPT1 Table Upstream MAR = 16d UQPT2T3 UQPT2T2 UQPT2T1 UQPT2T0 DQPT1T1 DQPT1T0 DQPT2T3 DQPT2T2 DQPT2T1 DQPT2T0 USCTFT DSCTFT DQPTM2 DQPTM0 USCTFM DSCTFM SCTF Table Upstream MAR = 23d SCTF Table Downstr. MAR = 31d UQPTM2 UQPTM0 DQPTM3 DQPTM2 QPT2 Table Upstream MAR = 17d QPT1 Table Downstr. MAR = 24d QPT2 Table Downstr. MAR = 25d SCTI Table Upstream SCTI Table Downstr. no Mask no Mask USCTI DSCTI SCTI Table Access Control Registers: DSADR USADR Figure 3-33 Table Access Overview Preliminary Data Sheet 90 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.6.2 LCI: Local Connection Identifier Table The basic function of the LCI table is assigning the connection (identified by the LCI) to one out of 8192 queues per direction. Single connections can be assigned to a dedicated queue (per VC queuing) or multiple connections might be assigned to the same queue. Please refer to "LCI Table Transfer Registers LCIC, LCI1, LCI2" on Page 199 for further details. 3.6.3 QCT: Queue Configuration Table The basic function of the QCT table is to determine queue specific parameters and to assign the queue to dedicated resources {Traffic Class, Scheduler Entity, Merge Group}. Please refer to "Queue Configuration Table Transfer Registers QCT0..6" on Page 219 for further details. 3.6.4 TCT: Traffic Class Table The function of the TCT table is to configure the buffer management behavior of up to 16 traffic classes (service classes). Please refer to "Traffic Class Table Transfer Registers TCT0, TCT1, TCT2, TCT3" on Page 203 for further details. 3.6.5 QPT: Queue Parameter Table The function of the QPT table is to configure the weight factor (in case of the queue is assigned to the WFQ scheduler) and the peak cell rate value (in case the peak cell rate shaper is enabled). Please refer to "Queue Parameter Table 2 Transfer Registers" on Page 257 for further details. 3.6.6 SOT: Scheduler Occupancy Table The function of the SOT table (for 2*128 scheduler entities) is to maintain the buffer filling levels associated with the dedicated scheduler and to control the scheduler specific DBA threshold indications. Please refer to "Scheduler Occupancy Table Transfer Registers SOT0..SOT4" on Page 230 for further details. 3.6.7 SCTI: Scheduler Configuration Table (Integer) The function of the SCTI table (for 2*128 scheduler entities) is to determine the integer part of the scheduler output rates as well as the UTOPIA port number the scheduler is assigned to. Preliminary Data Sheet 91 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY Please refer to "Scheduler Configuration Table Integer Transfer Registers" on Page 262 for further details. 3.6.8 SCTF: Scheduler Configuration Table (Fractional) The function of the SCTF table (for 2*128 scheduler entities) is to determine the fractional part of the scheduler output rates. Please refer to "Scheduler Configuration Table Fractional Transfer Registers" on Page 274 for further details. 3.6.9 MGT: Merge Group Table The function of the MGT table (for 128 merge groups per direction) is to enable and specify the cell header overwrite function for the merge group output streams. Please refer to "Merge Group Table Transfer Registers MGT0..MGT2" on Page 235 for further details. Preliminary Data Sheet 92 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.6.10 AVT: ABR/VBR Configuration Table The AVT table is the main context RAM of the ERC sub-system. 3.6.10.1 AVT Context RAM Organization and Addressing The AVT context RAM addressing scheme imposes some restrictions to the choice of QID numbers for support of VBR shaping or ABR (ER, VS/VD) operation. The table is organized into 2k sections of 4 double words each whereas each section corresponds to the respective QID number. Support of VBR shaping requires one section, i.e. up to 2k connections assigned to QID numbers {(0,) 1, ..., 2047} can be supported for VBR shaping. Support of ABR functionality requires 2 sections per connection, i.e. up to 1k connections can be supported with full ABR functionality. Only even QID numbers can be used for ABR operation. Selecting ABR for QID n (n = (0,) 2, 4, ..., 2046) also occupies section (n+1) prohibiting VBR operation for QIDs n and (n+1). In case support for 1k connections with either ABR or VBR functionality is sufficient, the resource management algorithm is significantly easier for administrating the AVT context RAM and QID resources. Preliminary Data Sheet 93 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY IOP/ABR Context Offset Address: 0 RAM DWord Address: VBR Context Offset Address: Word #0,1 0 0 DWord #0 Word #2,3 1 DWord #1 Word #4,5 2 DWord #2 Word #6,7 3 Word #8,9 4 Word #10,11 5 Word #12,13 6 Word #14,15 7 2 8 DWord #3 1 2 9 10 11 12 3 13 14 15 2046 8184 2046 8185 8186 8187 8188 2047 8189 8190 8191 ABRaddr := (QID<<1)*8 + WordOffset VBRaddr := QID*4 + WordOffset(0..15) DWordOffset(0..8) Note: only even QIDs (0, 2, 4, ... 2046) are allowed for ABR operation (check QID Filter in RM/Emit FIFOs!); An active ABR connection prohibits VBR operation for the same and the following QID, e.g. ABR on QID=2 prohibits VBR for QIDs 2 and 3; Figure 3-34 Context RAM Addressing Scheme The parameter utilization of each section depends on the mode selected for the particular queue (QID). The mode specific parameter sets are described in the subsequent chapters. 3.6.10.2 AVT Context RAM Section for ABR-VS/VD Support In ABR-VS/VD mode one connection entry requires 2 context RAM sections with a total of 8 double words. Since the AVT table is accessed from the external micro controller via Preliminary Data Sheet 94 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY a 16 bit transfer register, the ABR-VS/VD connection context appears as a 16 bit organized table with 16 entries as shown in Figure 3-35: QID*16 QID*16 + 1 QID*16 + 2 QID*16 + 3 QID*16 + 4 QID*16 + 5 QID*16 + 6 QID*16 + 7 QID*16 + 8 QID*16 + 9 QID*16 + 10 QID*16 + 11 QID*16 + 12 QID*16 + 13 QID*16 + 14 QID*16 + 15 Flags(3:0) dTi(15:0) Config(6:0) F0 CIb VCI(11:0) VPI(11:0) NIb EFCId EFCIu PTI VCI(15:12) C MCRf*(15:0) UDF1(7:0) UDF2(7:0) CCRf*(15:0) PCRf*(15:0) CIt NIt ERt*(15:0) Config(6:0) unused CRM(5:0) CRMcnt(9:0) dTf(15:0) ERb*(15:0) DIR BN RA RDFb(3:0) RIFb(3:0) FInRateCount(5:0) LastInRateSent(9:0) ToT ToA LastFRMSent(3:0) ADTF(9:0) reserved Figure 3-35 AVT Context Table: ABR-VS/VD The following parameters are supported as global values common to all ABR connections: * TRM: Register "ERCCONF1" on Page 294 Granularity 100 ms, value: 100 ms*2^(-TRM), range: (2^(-7) .. 2^0) * 100 ms * NRM: Provided to ERC unit via mailbox. * CDF: Provided to ERC unit via mailbox. 3.6.10.3 AVT Context RAM Section for ABR-ER Support In ABR-ER mode one connection entry requires 2 context RAM sections with a total of 8 double words. Since the AVT table is accessed from the external micro controller via a 16 bit transfer register, the ABR-VS/VD connection context appears as a 16 bit organized table with 16 entries as shown in Figure 3-36: Preliminary Data Sheet 95 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY QID*16 QID*16 + 1 QID*16 + 2 QID*16 + 3 QID*16 + 4 QID*16 + 5 QID*16 + 6 QID*16 + 7 QID*16 + 8 QID*16 + 9 QID*16 + 10 QID*16 + 11 QID*16 + 12 QID*16 + 13 QID*16 + 14 QID*16 + 15 CIf NIf CIb NIb Config(6:0) Qlenb(13:0) MCRb*(15:0) SumdTb(20:16) SumdTb(15:0) Cntb(4:0) Tlastb(15:0) dTb(15:0) ERf*(15:0) Vb EFCId EFCIu IQLb(1:0) Tlastb(20:16) Config(6:0) SumdTf(20:16) Qlenf(13:0) MCRf*(15:0) SumdTf(15:0) Vf Cntf(4:0) Tlastf(15:0) dTf(15:0) ERb*(15:0) IQLf(1:0) Tlastf(20:16) Figure 3-36 AVT Context Table: ABR-ER 3.6.10.4 AVT Context RAM Section for VBR Shaping Support In VBR shaping mode one connection entry requires 1 context RAM section with a total of 4 double words. Since the AVT table is accessed from the external micro controller via a 16 bit transfer register, the ABR-VS/VD connection context appears as a 16 bit organized table with 8 entries as shown in Figure 3-37: Preliminary Data Sheet 96 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY QID*16 QID*16 + QID*16 + QID*16 + QID*16 + QID*16 + QID*16 + QID*16 + QID*16 + QID*16 + TET(23:16) IDT(15:0 SDT1r,n(12:0) ST0r,n(12:10) SDT0r,n(9:0) STf(5:0) VDTr,n,f(18:16) unused VDTr,n,f(15:0) Temitr,n(12:0) Config(6:0) 1 2 3 2a 3a 4 5 6 7 unused so,e TSn,f(15:0) TPn,f(15:0) Figure 3-37 AVT Context Table: VBR Shaping Preliminary Data Sheet 97 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.6.10.5 Common AVT CONFIG Field The first word (WORD0) of each entry defines the entry type {inactive, ABR, VBR} with its respective submodes. The mapping of the 6 configuration bits Config(5:0) is summarized in "Config(5:0) Bit Map" on Page 98. For proper VBR operation, the Config(5:0) field must be replicated in WORD8. Table 3-7 Config(5:0) Bit Map Config field bit position absolute WORD bit position Function Bit 6 Bit 15 ERC enable if `1' then ERC functions enabled Bit 5 Bit 14 ABR enable `1': ABR Mode `0': VBR Mode Bit 4 Bit 13 ABR-VSVD enable; Core select `1': VS/VD Mode `0': ER Mode `1': upstream core `0': downstream core Bit 3 Bit 12 ABR-FWD enable; VBR mode ER: `1': BRM cell update `0': FRM cell update VS/VD: `1': downstream rate ctrl. `0': upstream rate ctrl. `0': VBR1 `1': VBR2 and VBR3 Bit 2 Bit 11 ABR-BIDIR enable; Flag `1': Bi-directional mode enabled CLP Bit 1 Bit 10 ABR-RSC enable; Flag `1': Reactive Switch Control enabled SDT valid Bit 0 Bit 9 unused; Flag unused IDTvalid Note: The configuration bit-field Conf(5:0) is duplicated in WORD8. This is required for correct SCAN operation since VBR operation utilizes two 8 word sections of the context table for two VBR connections. In case of ABR, the duplicated Conf(5:0) bit-field is ignored by the SCAN. Preliminary Data Sheet 98 2001-14-01 Prel. ABMP Data Sheet Functional Description PRELIMINARY 3.6.11 QCIT: Congestion Indication Table The function of the QCIT table (for 8192 downstream queues) is to determine the per queue threshold that triggers the queue congestion indication toward the QCI interface. Please refer to "Queue Congestion Indication Table Transfer Register" on Page 243 for further details. Preliminary Data Sheet 99 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY 4 Operational Description 4.1 Basic Device Initialization The following actions are recommended to be performed after reset to prepare the ABMP chip for operation: Basic settings: * * * * * Configure clocking system (DPLLs) Check register Reset values Initialize SDRAM Reset internal tables (RAMs) Set hardware configuration (UTOPIA configuration) ABMP diagnostic possibilities: * Check all internal RAMs and register values Data path setting and initial queueing and scheduling initialization: * Set MODE1 and MODE2 registers (Uni-directional Mode or Bi-directional Mode) * Configure UTOPIA interfaces: modi, number of PHYs * Initialize traffic class tables * Check data path (via adjacent ABMP devices) * Set empty rate generator (if required) * Set parameter MaxBurstS(3:0) (register "UECRI/DECRI" on Page 267) of the output Multiplexer and the parameter CDVMAX(8:0) (register "UCDV/DCDV" on Page 245) of the Peak Rate Limiter * Set global thresholds * Programming of Scheduler output rates * Assignment of Schedulers to PHYs at switch egress side * Assignment of Schedulers to switch outputs at ingress side 4.2 Basic Traffic Management Initialization To set up a connection, the complete linked list must be established: LCI Queue ID Scheduler and LCI Queue ID Traffic Class (see Figure 4-1). Additionally, the bandwidth and buffer space reservations must be performed (see below). Depending on the traffic class, special functions must be enabled; for example: ABR feedback enable or EPD/PPD for UBR. Preliminary Data Sheet 100 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY 8k common entry(Dn/Up) LCI Table 2*128 entries SOT Table LCI UpQID(13) DnQID(13) ABMcore(1) CLPT(1) DBAThresCross(8) Downstream Scheduler Block Upstream Scheduler Block 8k entries SCTI (Up) Table IntRate(14) Init(10) UtopiaPort(6) 8k entries SCTF (Up) Table DnQID UpQID FracRate(8) 2*8k entries QCT Table MinBG(8) MGID(7) MGconf/DQsch(1) SID(7) QIDvalid(1) TraffClass(4) ABRcore(1) VSVDen(1) RSall(1) DQac(1) QueueLength(14) 8k entries QPT1 (Up) Table flags(2) 8k entries QPT2 (Up) Table RateFactor(16) WFQfactor(14) 2*16 entries TCT Table SbMax(8) TraffClassMax(8) CLPtransDBA(1) GFRen(1) CntLPDBA(1) SCNT(1) PPDen(1) EPDen(1) ABRvp(1) ABRen(1) DH(3) SbCiCLP1(12) QueueMax(8) BufCiCLP1(18) QueueCiCLP1(12) BufEPD(8) BufMax(8) 2*128 entries MGT Table LCIoen(1) LCI(14) 8k entries (downstream only) QCI Table QCITH(12) Figure 4-1 Parameters for Connection Setup (Bitfield width indicated) Preliminary Data Sheet 101 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY Figure 4-1 refers to the following parameters: Abbreviation Description See page UpQID Points to the queue assigned to this connection in the upstream direction 7-202 DnQID Points to the queue assigned to this connection in the downstream direction 7-201 CLPT If set, the CLP bit of the cells are ignored; (not to be set for GFR; optional for ABR and UBR;) 7-200 ABMcore Selects upstream or downstream ABM Core in the Uni-directional Mode 7-200 MinBG Minimum guaranteed queue length 7-224 MGID Selects the VC-Merge Group the queue is assigned to 7-224 MGconf/DQsch Command bit to enable merge group assignment or dummy queue function 7-224 SID Selects the Scheduler 7-221 QIDvalid Enables queue; if cleared, cells directed to this queue are discarded and interrupt QIDINV (see 6-149f.) occurs 7-221 TrafClass Selects the traffic class 7-221 ABRcore Selects the ABM Core in which RM cell update is made for ABR connections 7-221 VSVDen Enables ABR-VS/VD (ERC unit) functions for this queue 7-221 RSall Enables the dummy queue function 7-221 DQac Status bit 7-221 QueueLength Status value (read only) 7-221 Preliminary Data Sheet 102 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY Abbreviation Description See page DBAThCross High threshold for Scheduler occupancy in steps of 256 7-231 IntRate Integer part of incremental value for Scheduler output rate 7-264 Init Initialization value 7-264 UtopiaPort Specify UTOPIA port for this scheduler 7-264 flags Initialization value 7-255 FracRate Fractional part of incremental value for Scheduler output rate 7-270 RateFactor Select value of peak rate limiter 7-259 WFQFactor Weight of multiplexer input in 15,360 steps 7-259 DH Selects the hysteresis value for threshold evaluation 7-213 ABRen If set, binary ABR marking by ABMP core is enabled 7-213 ABRvp (ABR service category) relating to the VP or to the individual VC, respectively; If set, congestion is indicated via VP RM cells (F4 flow) 7-213 EPDen If set, EPD is enabled 7-213 PPDen If set, PPD is enabled 7-213 SCNT Selects whether accepted packets or cells are counted 7-213 CntLPDBA Selects whether low and high priority cells are counted separately for DBA thresholds 7-213 GFRen 7-213 CLPTransDBA 7-213 Preliminary Data Sheet 103 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY Abbreviation See page BufMax Defines maximum number of non-guaranteed cells allowed in the entire buffer for this traffic class 7-206 BufEPD Defines threshold for EPD/maximum1) for this traffic class for the entire buffer 7-206 TrafClassMax Defines maximum number of cells for this traffic class 7-213 SbMax Defines threshold for the number of cells of this traffic class allowed in the associated Scheduler 7-213 QueueMax Defines threshold for each queue for this traffic class 7-208 QueueCICLP1 Combined threshold for each queue for CI indication (ABR) and CLP=1 cell discard in case of CLPT=0 7-206 This 8-bit value determines a global cell filling level threshold with a granularity of 1024 cells that triggers explicit packet discard (EPD) for CLP=1 tagged frames used by GFR traffic class service (low watermark). BufCiCLP SbCiCLP 1) Description This threshold determines a maximum number of low priority cells allowed to be stored per scheduler block with a granularity of 64 cells 7-208 7-211 mixed threshold: EPD if enabled; otherwise, maximum threshold 4.2.1 Setup of Queues Before assigning a connection to a new queue, it should be verified to be empty, as some cells could remain from the previous connection. A queue is emptied by setting it `invalid' while maintaining the scheduling parameters. An invalid queue will not except further cells; cells will be scheduled and de-queued, but not transmitted to the UTOPIA interface. The queue length can be monitored by the external microprocessor. Preliminary Data Sheet 104 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY 4.2.2 ABM Configuration Example In this section, a popular mini-switch scenario (Figure 4-2) is used to describe the most important points for the software configuration of the ABMP. Among other things, the following fixed assignments can be made in software by the user: * * * * Assignment of Schedulers to PHYs and programming of Scheduler output rates Definition of the necessary traffic classes Assignment of the queues to the traffic classes Assignment of the queues (QIDs) to the Schedulers (SIDs) Assignment of Schedulers and Programming Output Rates: The ABMP has 256 Schedulers (128 in the upstream direction and 128 in the downstream direction). In this example each xDSL device is assigned to a separate Scheduler (this guarantees each xDSL device a 2-Mbit/s data throughput without bandwidth restrictions caused by the other xDSL devices); then, 255 xDSL devices can be connected. The 256th Scheduler will be occupied by the E3 uplink to the public network. The assignment of the Schedulers to the PHYs is totally independent and even such a strong asymmetrical structure as in (Figure 4-2) can be supported. The output rates of the Schedulers must be programmed in such a way that the total sum does not exceed 622 Mbit/s (payload rate). From the example, the following result is derived: 255 x 2 Mbit/s + 1 x 34 Mbit/s = 544 Mbit/s 622 Mbit/s. Figure 4-2 ABMP Application Example: DSLAM Preliminary Data Sheet 105 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY Definition of Necessary Traffic Classes: The ABM allows up to 16 traffic classes to be defined by Traffic Class Table RAM entry via the registers TCT0 and TCT1, Page 93. In this example, there are 3 traffic classes: * CBR (real-time) = traffic class 1 * GFR (non-real-time) = traffic class 2 * UBR (non-real-time) = traffic class 3 Assignment of the queues to the traffic classes: Each queue must relate to a defined traffic class according to the Queue Configuration Table RAM entry via the TrafClass(3:0) bits of the QCT table. Assignment of the Queues (QIDs) to the Schedulers (SIDs): Every Scheduler possesses a certain number of queues depending on the assignment by the user of the SID(5:0) bits of register QCT1. In the example, every ADSL device has four data connections so that four queues per Scheduler are necessary. Each Scheduler of the ABM has one real-time queue and an arbitrary number of non-real-time queues. For Schedulers #1..#255, indicate that the first queue belongs to Traffic Class 1, the 2nd and 3rd Queue to Traffic Class 2, and the 4th Queue to Traffic Class 3. There are 1020 (1..1020) queues altogether for Schedulers #1..#255. The 256th scheduler must be able to serve the 255 xDSL devices (255 Schedulers and appropriate queues). Thus, Scheduler #256 has 255 x 2 = 510 non-real-time queues as every Scheduler from #1..#255 possesses two GFR non-real-time queues (GFR has a guaranteed minimum rate; thus, each GFR queue needs a per VC queueing). The 255 UBR queues of Schedulers #1..#255 need only one UBR queue at the 256th Scheduler as UBR has no guaranteed minimum rate. As every Scheduler has only one real-time queue, the 255 real-time queues from Schedulers #1..#255 flow into the one real-time queue of Scheduler #256. Therefore, Scheduler #256 needs the assignment of 510 (GFR) + 1 (UBR) + 1 (CBR) = 512 queues. 4.2.3 Normal Operation In normal operation, no microprocessor interaction is necessary as the ABMP chip does all queuing and scheduling automatically. For maintenance purposes, periodically the microprocessor could read out the counters for buffer overflow events. Some overflow events may also be programmed as interrupts. The only instance of permanent microprocessor interaction is operation of the dynamic bandwidth allocation protocol. In this case, the microprocessor must permanently check the two fill thresholds of the upstream Schedulers and adjust their output rates accordingly. In case of static bandwidth allocation, all rate adjustments are made only at connection setup or teardown. Preliminary Data Sheet 106 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY 4.2.4 Bandwidth Reservation Due to the WFQ Scheduler concept of the ABMP, the Connection Acceptance Check (CAC) is very simple: * Check if the Guaranteed Rate of the connection fits within the spare bandwidth of the Scheduler. For the definition of the Guaranteed Rate, see Table 3-1. Mathematically, the CAC can be reduced to the following formulas: For all connections, verify that the Scheduler is not overbooked: Sum of Guaranteed Rates Scheduler output rate (1) For real-time connections, (CBR, VBR-rt) in equation (1) is the only condition required. For non-real-time connections or connections using the WFQ Multiplexer, additional conditions must be fulfilled. VBR, ABR and UBR+ connections must be setup in per-VC queuing configurations, that is, an empty queue must be found for the connection. The Guaranteed Rate determines the weight of the queue: GR m in 14 ni = INT --------------------- x 2 GR (2) with * ni {1, 2, 3, ...15360} is the WFQ factor for the connection i (1/ni is the weight factor Wi) GRmin the defined constant defining the minimum rate to be guaranteed Note: ni with a maximum value of 15360 due to hardware limitations. Note: In addition to the hardware related tasks, a key system constant must be predefined: the minimum Guaranteed Rate GRmin. This parameter provides an absolute value to the relative weight factors of the WFQ Multiplexers. It is usually identical for all Schedulers in a system, as the Guaranteed Rate is related to the service classes - and these are identical for all users, independent of where they are connected to a network. * INT(x) the integer part of x. The integer function in equation (2) selects the next smaller value of the integer n, that is to say, the weight factor is higher than required and, thus, the queue is served slightly faster in order to guarantee the rate. For UBR connections without any rate guarantee, the following procedure is appropriate for the WFQ Multiplexer: * Reserve one queue per Scheduler for all UBR connections Preliminary Data Sheet 107 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY * Assign minimum weight factor to this queue * Take the bandwidth of the queue into account using formulas (1) and (2) as if for a non-real-time connection * Assign UBR connections to this queue without any further CAC Note: EPD/PPD functionality is offered by the ABMP on a per-VC basis. Hence, these functions can be supported also for UBR connections sharing one queue. Note: In addition to the bandwidth reservation, buffer space must be assigned by the appropriate setting of thresholds. 4.2.5 Bandwidth Reservation Example As an example, an access network multiplexer is assumed with ADSL lines and an E3 uplink. CBR and UBR+ connections are supported. A minimum Guaranteed Rate of GRmin = 19.2 kbit/s is selected. This allows GR up to 314.57 Mbit/s with increasing granularity for higher values. This behavior is well suited to the Guaranteed Rates which are minimum or sustainable rates. The values for MCR and SCR will be well below 10 Mbit/s for public networks. In high speed LANs with high MCR and SCR values, a higher minimum rate could be selected. Additionally, it is assumed that three types of line interfaces (PHY) exist in the system: 34 Mbit/s for the uplink, ADSL rates of 8 Mbit/s downstream, and 0.6 Mbit/s upstream. For each PHY, a maximum possible weight factor 1/n exists: nmax = 9, nmax= 39, and nmax = 524, respectively. Two types of non-real-time connection are defined with Guaranteed Rates of 100 kbit/s and 20 kbit/s with the weight factors 1/n, n100 = 3146 and n20 = 15730, respectively. The 100 kbit/s connections would be used for the downstream direction, and the 20 kbit/s connections for the upstream direction. Table 4-1 provides the maximum number of connections possible on each PHY. Table 4-1 PHY Number of Possible Connections per PHY GR = 100 kbit/s GR = 20 kbit/s 34 Mbit/s 349 1747 8 Mbit/s 80 403 0.6 Mbit/s 6 30 Preliminary Data Sheet 108 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY For example, if the maximum number of connections for each Subscriber is fixed (such as 5 data connections), the queues can be pre-configured for each Subscriber so that only the LCI assignment must be changed when a connection is setup or released. 4.2.6 Programming of the Peak Rate Limiter / PCR Shaper For each queue, an optional peak rate shaper can be programmed. The possible peak rate values can be determined with: r= r m in 16 -------------- x 2 m [cells/s] (3) with * m {1, 2, 3, ...65472} the rate factor * TStepC {0, 1, 2, 3, ...7} the shaper speed factor (default TStepC = 4 guarantees compatibility to ABM version 1.1) (see "USCONF/DSCONF" on Page 252 for coding of parameter TStepC) * rmin depending on the total throughput, i.e. the clock frequency: rmin = ( T StepC - 7 ) SYSCLK -----------------------x ( ) 2 16 2 [cells/s] (4) The following table provides some examples for the minimum cell rates to be shaped depending on configuration value TStepC: Table 4-2 Minimum Peak Rate Shaper Values Minimum Rates SYSCLK TStepC 52 MHz 0 6.20 cells/s 2.38 kbps 9.54 cells/s 3.67 kbps 1 12.40 cells/s 4.76 kbps 19.07 cells/s 7.32 kbps 2 24.80 cells/s 9.52 kbps 38.15 cells/s 14.65 kbps 3 49.59 cells/s 19.04 kbps 76.29 cells/s 29.30 kbps 4 (default) 99.18 cells/s 38.09 kbps 152.58 cells/s 58.59 kbps 5 198.36 cells/s 76.17 kbps 305.16 cells/s 117.19 kbps 6 396.73 cells/s 152.34 kbps 610.35 cell/s 234.38 kbps 7 793.46 cells/s 304.69 kbps 1220.70 cells/s 468.75 kbps Preliminary Data Sheet 80 MHz 109 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY 4.2.7 Scheduler Output Rate Calculation Example The parameters of the Schedulers must be chosen in relation to the transmission rates of the PHYs, respectively. That means for a Scheduler which transmits in the upstream direction such as 150 Mbit/s output rate and for a Scheduler which transmits in the downstream direction such as 6 Mbit/s output rate for a ADSL device (as depicted in Figure 42). Within the ABM, the Scheduler output rate is represented by the two parameters: IntRate(13:0) and FracRate(7:0). These parameters are without dimension and thus only indirectly represent the output rate. The following part declares how to derive the two parameters by a time parameter T and the correlation between these parameters and the output rate R: SYSCLK - [without dimension] T = -----------------------------------1 32 cells x R (5) with * ABM core clock SYSCLK = [1/s] * Scheduler output rate R = [cells/s] IntRate = int ( T ) (6) ceil { T - int ( T ) } x 256 (7) with * int(T) is integer part of T FracRate = Note: `ceil' is an operator that rounds-up to the next integer number. Example: Chosen values: R0 = 347000 cells/s (150 Mbit/s), SYSCLK = 50 MHz with (5) 6 50 x 10 T 0 = --------------------------------- = 4.50288... 32 x 347000 thus with (6) and (7) IntRate = 4 and FracRate = 130 (rounded up) Because of rounding the FracRate value, the effective scheduler rate R needs to be calculated by solving equation (7) to T and equation (5) to R: 130 - 1 T = ------------------- + IntRate [ T 0 ] = 4.5039... 256 Preliminary Data Sheet 110 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY and 6 -1 -1 50 x 10 R = -------------------------------------cells = 346921cells 32 x 4.5039... 4.2.8 Empty Cell Rate Calculation Example The internal SDRAM refresh generator uses empty cell cycles to perform its refresh cycles. Thus the refresh function is closely related to the scheduler output rate configuration. The empty cell rate generator guarantees a minimum number of empty cell cycles required for refresh cycles. A maximum value for parameter T can be derived by the following term: SYSCLK x RefreshPeriod T max = -------------------------------------------------------------------------32 x RefreshCycles (8) with: * ABMP core clock SYSCLK = [1/s] * SDRAM RefreshPeriod = [s] * SDRAM RefreshCycles requirement The empty cell rate parameter definition for fractional and integer parts of T is according to equations (5) and (6). Example: Given values: RefreshPeriod = 64ms, RefreshCycles = 4096, SYSCLK = 50 MHz Tmax = 24.414 Thus the value of T that is represented by programmed device parameters IntRate and FracRate according to equations (6) and (7), must be less or equal to Tmax to guarantee sufficient refresh cycles according to the SDRAM specification. In case of additional bandwidth needs to be reserved (e.g. for multicast operation in subsequent devices), a second maximum condition for parameter T can be derived depending on the empty cell rate required for multicast bandwidth reservation. In this case the value of T must conform the following equation: T = Min {T equation ( 5 ), T MCreservation ,T max} Preliminary Data Sheet 111 (9) 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY 4.2.9 Traffic Classes 4.2.9.1 CBR Connections These connections should use the real-time bypass of the respective Scheduler. However, if two priority levels for real-time connections must be offered, a slightly lower realtime performance can be achieved by using the WFQ Multiplexer with maximum weight. In this case, the bandwidth must fit into the WFQ Multiplexer (conditions (1) and (2) in "Bandwidth Reservation" on Page 107). 4.2.9.2 VBR-rt Connections These connections can be treated like CBR connections with a guaranteed cell rate less than or equal to the Peak Cell Rate (PCR). Depending on the behavior of the sources, a statistical benefit could be obtained by reserving less than PCR. As an example, assume 1000 connections with compressed voice are multiplexed on a link. PCR is 32 kbit/s, but on average only 16 kbit/s. SCR is 8 kbit/s. Hence, instead of reserving 32 Mbit/s for the ensemble of connections, only 16 Mbit/s must be reserved. The large number of connections guarantees that the mean sum rate of 16 Mbit/s is never exceeded. 4.2.9.3 VBR-nrt Connections For these connections, the three parameters PCR, SCR, and MBS are given. One queue is reserved for each VBR-nrt connection with SCR programmed as the weight of the respective Scheduler queue. The maximum queue size is set to MBS plus ~100 cells for cell level bursts. If the buffer space reserved for VBR-nrt connections is set to the sum of all MBS, it is guaranteed that no cell is lost. However, with a large number of VBR-nrt connections, the total reserved buffer can be smaller with a negligible number of cell losses. For the PCR, no adjustment is necessary as the rates of the queues of a Scheduler always adjust automatically to the maximum possible values. As an option for network endpoints, the PCR may be shaped. The output rate of each queue may be limited individually to a programmable value which results in PCR shaping. This could be useful at points where a connection leaves one network and enters the next network which might police the connection (NPC function). 4.2.9.4 ABR Connections ABR connections must be setup in per-VC queuing configuration. The queue is assigned a weight guaranteeing the MCR of the connection. A backward direction connection must be setup. In Bi-directional Mode, the same queue ID must be chosen in order to make the ABR functions work properly. Preliminary Data Sheet 112 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY Binary ABR marking functions can be performed by programming an appropriate traffic class in the queue manager. For ABR explicit rate or VS/VD functions, the ERC unit must be programmed accordingly for the same QID. In Uni-directional Mode, the queue ID value with the toggled LSB must be setup for the backward direction. EFCI marking in forward data cells or CI/NI marking in backward RM cells can be enabled per traffic class. Note: Also the LCI is toggled in the Uni-directional Mode (see "LCI Translation in MiniSwitch Configurations" on Page 27). 4.2.9.5 UBR+ Connections UBR+ connections are UBR connections with MCR. They must be setup in individual queues with the weight factor guaranteeing the MCR. To enhance the overall throughput, the EPD/PPD function is enabled. 4.2.9.6 GFR Connections GFR Connections are setup like UBR+ connections with a Guaranteed Rate in individual queues, with the weight factor guaranteeing the rate for the high-priority packets. The threshold for the discard for low-priority packets must be set accordingly. 4.2.9.7 UBR Connections As described in "Bandwidth Reservation" on Page 107, one queue per Scheduler is reserved for UBR connections with the smallest weight assigned. All UBR connections share this queue. EPD/PPD can be enabled as the relevant parameters are stored per connection (LCI table). 4.2.9.8 Generic Service Classes 4.3 Basic Enhanced Rate Control Initialization After reset, the ERC unit automatically starts loading the firmware either from the internal ROM or from an external serial EEPROM via the SPI interface. The Source is selected by signal `IOPRAMSEL' ("SPI Interface (5 pins)" on Page 41). In either case, firmware download completion is indicated by status bit `FWDF' (bit 15) in register "ERCCONF0" on Page 293 that can be polled by the external uP. At this time the ERC will start to run the firmware initialization and self-test routines. Completion of firmware initialization will be reported to the external uP by a message via the ERC uP mailbox. Preliminary Data Sheet 113 2001-14-01 Prel. ABMP Data Sheet Operational Description PRELIMINARY After generating this message the firmware is fully operative and in its "idle loop". The external uP may: * * * * enable the SCAN unit, set-up connections, modify/monitor connection parameter, tear-down connections. 4.4 Connection Tear-Down Example Teardown of Queues Disabling a queue via the queue-disable bit does not clear the cells contained in the queue, but: * The acceptance of the queue for new cells is disabled * The queue is still served, but the cells are discarded Normally, at the time a queue is cleared, there will be no more cells in the queue. This can be checked by reading the queue length. In case of a highly filled queue which is served slowly, the time to empty the queue could be long. To deplete the queue more quickly, its weight can be increased temporarily. However, because the discarded cells produce idle times on the UTOPIA output, the chosen weight factor should not be too high. 4.5 AAL5 Packet Insertion/Extraction (For future document version.) 4.6 Exception Handling The ABMP provides a set of `fatal error' interrupts and few interrupts that are required for normal operation. Those are * control interrupts for activation/de-activation of VC-merge groups * control interrupts for activation/de-activation of `dummy' queues * control interrupts for DBA threshold crossing information It is recommended to reset the device upon occurrence of a `fatal interrupt' which is generated by the ABMP detecting internal consistency violations. Preliminary Data Sheet 114 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5 Interface Description 5.1 UTOPIA L2 Interfaces (PHY-side) The UTOPIA interface to the PHY is ATMF UTOPIA Level2 and Level1 compliant. The interface can be configured in Master or Slave Mode. Internal UTOPIA FIFOs guarantee Head-of-Line Blocking free operation in both modes. Each interface direction (receive and transmit) is independently clocked. The PHY-side and Backplane-side UTOPIA interfaces are identical with minor exceptions as described in the subsequent chapters. 5.1.1 URXU: UTOPIA Receive Upstream (PHY side) The UTOPIA receive interface supports up to 48 PHY addresses that can individually be enabled. In Master mode, 48 PHYs are supported in 4 groups (4*12 scheme). In slave configuration two polling modi are supported []: * Up to 48 Ports in 4 groups (4*12 scheme) * Up to 31 Ports in 1 group (1*31 scheme) Note: In slave mode, the interface responds to all enabled port addresses in either scheme. 4 cell FIFO Backpressure Figure 5-1 UTOPIA Receive Upstream (PHY side) Master Mode Cell Handler (Upstream) URXDATU(15:0) URXSOCU URXPRTYU URXCLKU URXADRU(4:0) URXENBU(3:0) URXCLAVU(3:0) Addressing up to 4*12 PHYs: PHY 3 Address PHY 2 0..11 Address PHY 1 0..11 Address PHY 0 0..11 Address 0..11 UTOPIA Receive Upstream Master Mode Preliminary Data Sheet 115 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 4 cell FIFO Backpressure Figure 5-2 UTOPIA Receive Upstream (PHY side) Slave Mode Cell Handler (Upstream) URXDATU(15:0) URXSOCU URXPRTYU URXCLKU URXADRU(4:0) URXENBU(3:0) URXCLAVU(3:0) Responding to a) up to 4*12 addresses b) up to 1*31 addresses (URXENBU(0), URXCLAVU(0) only) UTOPIA Receive Upstream Slave Mode Head of Line Blocking Avoidance The internal Cell Handler Unit accepts any cell from the common UTOPIA receive FIFO to either accept the cell or discard the cell depending on threshold decisions. Thus no HOL blocking can occur. Optionally, internal thresholds can be enabled to generate backpressure to UTOPIA port groups in a fixed scheme []: * * * * Threshold 0 effects ports {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44} Threshold 1 effects ports {1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45} Threshold 2 effects ports {2, 6, 10, 14, 18, 22, 26, 30, 33, 38, 42, 46} Threshold 3 effects ports {3, 7, 11, 15, 19, 23, 27, 31, 34, 39, 43, 47} In case of pending backpressure, a specific port reacts in the same way as being disabled: * Master Mode: A backpressured (or disabled) port is deleted from the polling scheme. * Slave Mode: A backpressured (or disabled) port does not generate a cell available signal indication. Note: The internal backpressure does only effect the polling/response scheme. The UTOPIA receive FIFO is serviced in any case to avoid HOL blocking. Preliminary Data Sheet 116 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.1.2 UTXD: UTOPIA Transmit Downstream (PHY side) The UTOPIA transmit interface supports up to 48 PHY addresses that can individually be enabled. In Master mode, 48 PHYs are supported in 4 groups (4*12 scheme). In slave configuration two polling modi are supported []: * Up to 48 Ports in 4 groups (4*12 scheme) * Up to 31 Ports in 1 group (1*31 scheme) Note: In slave mode, the interface responds to all enabled port addresses in either scheme. 96 Cells Buffer Pool: Logical Queues per UTOPIA port Queue Specific Backpressure UTOPIA Transmit Downstream (PHY side) Master Mode Cell Handler (Downstream) A cell buffer pool of 96 cells is provided for UTOPIA port specific queues. The number of enabled ports determines the queue length that can be configured, e.g. 2 cells per queue in case all 48 ports are enabled. UTXDATD(15:0) UTXSOCD UTXPRTYD UTXCLKD UTXADRD(4:0) UTXENBD(3:0) UTXCLAVD(3:0) Addressing up to 4*12 PHYs: PHY 3 Address PHY 2 0..11 Address PHY 1 0..11 Address PHY 0 0..11 Address 0..11 Scheduler Block Figure 5-3 UTOPIA Transmit Downstream Master Mode Preliminary Data Sheet 117 2001-14-01 Prel. ABMP Data Sheet Interface Description 96 Cells Buffer Pool: Logical Queues per UTOPIA port Queue Specific Backpressure UTOPIA Transmit Downstream (PHY side) Master Mode Cell Handler (Downstream) PRELIMINARY UTXDATD(15:0) UTXSOCD UTXPRTYD UTXCLKD UTXADRD(4:0) UTXENBD(3:0) UTXCLAVD(3:0) Responding to a) up to 4*12 addresses b) up to 1*31 addresses (UTXENBD(0), UTXCLAVD(0) only) Scheduler Block Figure 5-4 UTOPIA Transmit Downstream Slave Mode Head of Line Blocking Avoidance The internal Cell Handler Unit forwards cells to UTOPIA port specific queues. In case of a filled queue, queue-specific backpressure is signalled to all schedulers that are associated to that queue/port prohibiting further cell emits. Thus no HOL blocking can occur. Preliminary Data Sheet 118 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.1.3 UTOPIA Port/Address Mapping (PHY side) The following table describes the mapping of UTOPIA addresses and groups to port numbers. Table 5-1 Port/Address Mapping Port Number Address Group 0 Group 1 Slave Mode 2 Group 2 Group 3 Slave Modes 1 and Master Modes 30 30 - - - - ... ... ... ... ... ... 12 12 - - - - 11 11 11 23 35 47 10 10 10 22 34 46 9 9 9 21 33 45 8 8 8 20 32 44 7 7 7 19 31 43 6 6 6 18 30 42 5 5 5 17 29 41 4 4 4 16 28 40 3 3 3 15 27 39 2 2 2 14 26 38 1 1 1 13 25 37 0 0 0 12 24 36 Preliminary Data Sheet 119 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.1.4 Functional UTOPIA Timing (PHY side) The functional timing is compatible to ATMF UTOPIA Level 2 standard [] and ATMF UTOPIA Level 1 standard [] respectively. Remark 1 The ABMP UTOPIA interfaces always introduce at least 2 idle clocks between transmission or reception of subsequent ATM cells. Remark 2 The ABMP UTOPIA interfaces in Level 1 slave mode do not support constant active enable signals UTXENBi/URXENBi (i = {D(Downstream); U(Upstream)}). The enable signals must be deasserted with each cell cycle. Preliminary Data Sheet 120 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.1.5 UTOPIA Master Mode Polling Scheme (PHY side) The polling scheme is based on a port priority list. A serviced port is automatically moved to the end of the priority list. The priority list port sequence is based on incrementing addresses; for a given address, the port numbers are in increasing order: Table 5-2 Port Polling Sequence 1 2 3 4 Sequence: 0 12 24 36 1 13 25 37 2 14 26 38 3 15 27 39 4 Priority: decreasing priority -> max Prio. 0 min Prio. Address: decreasing priority -> Example: Assuming port 25 (printed bold in example pattern) is top of the priority list and gets serviced. Now the list top pointer is moved to the next entry which is port 37 (i.e. port 25 becomes the end of the list). Note: Disabled or internally backpressured port numbers are deleted from the priority list. Note: The polling operation of Receive and Transmit interfaces are independent to each other. Preliminary Data Sheet 121 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.1.6 UTOPIA Cell Format (PHY side) The following sub-chapters describe the cell format expected by the ABMP depending on the selected mapping mode. Transmitted cells have the same format. The ABMP may modify user-cell field `EFCI' and the LCI field (VC-Merge function) depending on the configuration. In OAM cells, bits `CI' and `NI' as well as Function Specific fields may be modified. The CRC10 field gets recalculated accordingly. 5.1.6.1 UTOPIA Level 2 Standard Cell Formats Table 5-3 bit: 15 Standardized UTOPIA Level 2 Cell Format (16-bit) 14 13 12 11 10 9 0 VPI(11:0) 1 VCI(11:0) 8 7 6 5 4 3 2 1 0 VCI(15:12) PT(2:0) 2 UDF1 UDF2 3 Payload Octet 1 Payload Octet 2 4 Payload Octet 3 Payload Octet 4 ... : : 26 Payload Octet 47 Payload Octet 48 CLP Note: All Fields According to Standards, Unused Octets Shaded Table 5-4 bit: 15 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells 14 13 12 11 10 9 0 VPI(11:0) 1 VCI(11:0) 2 3 8 6 5 4 3 2 1 PT(2:0) CLP UDF2 Function Type(3:0) Function Specific Octet 1 4 Function Specific Octet 2 Function Specific Octet 3 ... : : 25 Function Specific Octet 44 Function Specific Octet 45 26 0 VCI(15:12) UDF1 OAM Type(3:0) 7 Reserved CRC10 Note: All Fields According to Standards, Unused Octets Shaded Preliminary Data Sheet 122 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.1.6.2 LCI Mapping Mode: VPI Mode In mapping mode `VPI' the ABMP expects a 12 bit local connection identifier in the location of the VPI field. Mapping mode `VPI' is configured via bitfield LCIMOD(1:0)='00' in Register []. Table 5-5 bit: 15 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells 14 13 12 11 10 9 0 LCI(11:0) 1 VCI(11:0) 8 7 6 5 4 3 2 0 VCI(15:12) PT(2:0) 2 UDF1 UDF2 3 Payload Octet 1 Payload Octet 2 4 Payload Octet 3 Payload Octet 4 ... : : 26 Payload Octet 47 Payload Octet 48 5.1.6.3 1 CLP LCI Mapping Mode: VCI Mode In mapping mode `VCI' the ABMP expects a 16 bit local connection identifier in the location of the VCI field. Mapping mode `VCI' is configured via bitfield LCIMOD(1:0)='01' in Register []. Table 5-6 bit: 15 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells 14 13 12 11 10 9 0 LCI(11:0) 1 VCI(11:0) 8 7 6 5 4 3 2 1 0 VCI(15:12) PT(2:0) 2 UDF1 UDF2 3 Payload Octet 1 Payload Octet 2 4 Payload Octet 3 Payload Octet 4 ... : : 26 Payload Octet 47 Payload Octet 48 CLP Since the ABMP supports 16k connections, the MSB's bit 15 and 14 of the LCI must match the selected quarter segment. Otherwise the cells are automatically forwarded to the global real time bypass queue (Queue 0) and may be handled by a subsequent ABMP device. Preliminary Data Sheet 123 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.1.6.4 LCI Mapping Mode: Infineon Mode In mapping mode `Infineon' the ABMP expects a 16 bit local connection identifier in the location of the VCI field. Mapping mode `Infineon' is configured via bitfield LCIMOD(1:0)='10' in Register []. Table 5-7 bit: 15 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells 14 13 12 11 10 9 0 LCI(11:0) 1 VCI(11:0) 2 transparent LCI(13:12) 8 7 6 5 4 3 2 1 0 VCI(15:12) PT(2:0) CLP UDF2 LCI(15:14) 3 Payload Octet 1 Payload Octet 2 4 Payload Octet 3 Payload Octet 4 ... : : 26 Payload Octet 47 Payload Octet 48 Since the ABMP supports 16k connections, the MSB's bit 15 and 14 of the LCI must match the selected quarter segment. Otherwise the cells are automatically forwarded to the global real time bypass queue (Queue 0) and may be handled by a subsequent ABMP device. 5.1.6.5 LCI Mapping Mode: Address Reduction Mode In mapping mode `Address Reduction' the ABMP generates a 16 bit local connection identifier based on the marked bit fields. Mapping mode `Address Reduction' is configured via bitfield LCIMOD(1:0)='11' in Register []. Table 5-8 bit: 15 Standardized UTOPIA Level 2 Cell Format (16-bit): OAM Cells 14 13 12 11 10 9 0 LCI(11:0) 1 VCI(11:0) 2 transp. 8 7 6 5 4 3 2 0 VCI(15:12) PT(2:0) optional PNUT(5:0) transp. Payload Octet 1 Payload Octet 2 4 Payload Octet 3 Payload Octet 4 ... : : 26 Payload Octet 47 Payload Octet 48 124 CLP optional PNUT(5:0) 3 Preliminary Data Sheet 1 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY Note: Mapping of UTOPIA port number to UDF1 or UDF2 fields is optionally. The port information used by the internal address reduction unit is also provided by internal side-band signals. To generate an internal connection identifier (LCI), programmable parts of the fields VCI and VPI optionally supplemented by the UTOPIA port number can be used as basis. The UTOPIA port number is internally provided either by side-band signals (no modifications to ATM cell) or mapped into either the UDF1 or UDF2 field of the cells. In those cases, the respective fields are not transparent. The Address Reduction Mode is described in Chapter 3.2.5. Preliminary Data Sheet 125 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.2 UTOPIA L2 Interface (Backplane-side) 5.2.1 URXD: UTOPIA Receive Downstream (Backplane side) The UTOPIA Receive Downstream Interface is identical to the UTOPIA Receive Upstream Interface as described in Chapter 5.1.1 beside the supported clock frequency range. Standard Exceeding UTOPIA Feature: To support system architectures that require a bandwidth overprovisioning from the backplane, the URXD can be operated up to 66 MHz which corresponds to a data rate of 874 Mbit/s received from the backplane. This provides an overprovisioning factor of 1.4 to OC12 data rate on the line side. Please refer to [] for timing requirements of this operation mode. 5.2.2 UTXU: UTOPIA Transmit Upstream (Backplane side) The UTOPIA Transmit Upstream Interface is identical to the UTOPIA Transmit Downstream Interface as described in Chapter 5.1.2. 5.2.3 UTOPIA Port/Address Mapping (Backplane side) The UTOPIA Port/Address mapping (Backplane side) is identical to the UTOPIA Port/ Address Mapping as described in Chapter 5.1.3. 5.2.4 Functional UTOPIA Timing (Backplane side) The functional timing is compatible to ATMF UTOPIA Level 2 standard [] and ATMF UTOPIA Level 1 standard [] respectively. Remark 1 The ABMP UTOPIA interfaces always introduce at least 2 idle clocks between transmission or reception of subsequent ATM cells. Remark 2 The ABMP UTOPIA interfaces in Level 1 slave mode do not support constant active enable signals UTXENBi/URXENBi (i = {D(Downstream); U(Upstream)}). The enable signals must be deasserted with each cell cycle. 5.2.5 UTOPIA Master Mode Polling Scheme (Backplane side) The UTOPIA Polling scheme (Backplane side) is identical to the UTOPIA Polling scheme as described in Chapter 5.1.5. Preliminary Data Sheet 126 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.2.6 UTOPIA Cell Format (Backplane side) The UTOPIA Polling scheme (Backplane side) is identical to the UTOPIA Polling scheme as described in Chapter 5.1.6. 5.3 MPI: Microprocessor Interface The ABMP microprocessor interface is a generic asynchronous 16 bit slave-only interface that supports Intel and Motorola style control signals. The interface is `ready' signal controlled, since execution times for read cycles depend on the specific transaction, e.g. indirect access of internal tables require more clock cycles than standard register access. 5.3.1 Intel Style Write Access MPADR(7:0) MPCS MPWR MPRDY MPDAT(15:0) MPMODE Figure 5-5 Intel Style Write Access Preliminary Data Sheet 127 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.3.2 Intel Style Read Access MPADR(7:0) MPCS MPRD MPRDY MPDAT(15:0) MPMODE Figure 5-6 5.3.3 Intel Style Read Access Motorola style Write Access MPADR(7:0) MPCS (MPRD) DS (MPWR) R/W (MPRDY) RDY (DTACK) MPDAT(15:0) MPMODE Figure 5-7 Motorola Style Write Access Preliminary Data Sheet 128 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.3.4 Intel Style Read Access MPADR(7:0) MPCS (MPRD) DS (MPWR) R/W (MPRDY) RDY (DTACK) MPDAT(15:0) MPMODE Figure 5-8 5.3.5 Motorola Style Read Access Interrupt Signals The ABMP asserts its interrupt signals if non-masked interrupt events are pending in the respective interrupt status registers. Interrupt signals are deasserted in case all events are cleared by writing `1' to pending interrupt bits (e.g. write 0xFFFFH to the respective Interrupt Status Register). This allows edge sensitive interrupt implementations. Interrupt signals are of type `Open Drain' to allow wired-or implementations sharing one interrupt signal with other devices. Preliminary Data Sheet 129 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.4 External RAM Interfaces 5.4.1 RAM Configurations The ABMP device uses synchronous dynamic RAM (SDRAM) for the storage of ATM cells and synchronous static RAM (SSRAM) for the storage of cell pointers. Two SDRAM Interfaces and one SSRAM Interface are provided. Each of the two SDRAM Interfaces is associated with one of the ABM Cores. The SSRAM Interface is shared by both ABMP Cores. All RAM Interfaces are operated with the system clock provided by the ABMP: Table 5-9 External RAM Sizes Cell Pointer Min. SSRAM Required Upstream Cell SDRAM Min. UBMTH UpRequired stream DownBuffer: stream Cell SDRAM e.g. 128 Mb 512 k x 32 bit e.g. 2*(4Mb*16) 128 Mb e.g. 2*(4Mb*16) 3FFFFH 256k cells 3FFFFH 256k cells e.g. 64 Mb 256 k x 32 bit e.g. 1*(2Mb*32) 64 Mb e.g. 1*(2Mb*32) 1FFFFH 128k cells 1FFFFH 128k cells e.g. 32 Mb 128 k x 32 bit 32 Mb 0FFFFH 64k cells e.g. 128 Mb 256 k x 32 bit e.g. 2*(4Mb*16) none 3FFFFH 256k cells 0000H 0 e.g. 64 Mb 128 k x 32 bit e.g. 1*(2Mb*32) none 1FFFFH 128k cells 0000H 0 e.g. 64 k x 32 bit none 0FFFFH 64k cells 0 32 Mb DBMTH Downstream Buffer: 0FFFFH 64k cells 0000H Note: The upstream cell storage RAM must always be connected. Preliminary Data Sheet 130 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY The minimum required width of the cell pointer SSRAM is in the range 16..20 bit depending on the selected Cell Storage Size and additional feature configurations: Table 5-10 Cell Pointer RAM Width Cell Storage RAM Enabled cell capacity Features (each) Stored Address Ptr Width Feature Bits Min. SSRAM Width 256k VBR.2/3 + EOP Mark. 18 2 20 EOP Mark. 18 1 19 none 18 0 18 VBR.2/3 + EOP Mark. 17 2 19 EOP Mark. 17 1 18 none 17 0 17 VBR.2/3 + EOP Mark. 16 2 18 EOP Mark. 16 1 17 none 16 0 16 128k 64k Note: VBR.2/3 represents VBR shaping function 2 and 3 requiring one additional bit storage in the CPR for the CLP bit. EOP Mark. represents one additional bit storage in the CPR for End-of-Packet indication required by EPD/PPD and VC-Merge operation. The following table gives an example of supported SDRAM configuration: Preliminary Data Sheet 131 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY Table 5-11 SDRAM Configuration Examples Type Configuration per Direction 512k * 32 (4 bank) (64Mb Type) 1 SDRAM: 8 bit column address 10 bit row address 2 bit bank select Note: This Configuration supports only 128k cells storage per direction. 1Mb * 16 (4 bank) (64Mb Types) 2 SDRAMs: 8 bit column address 12 bit row address 2 bit bank select Note: This Configuration supports 256k cells storage per direction. 2Mb * 16 (4 bank) (128Mb Types) 2 SDRAMs: 9 bit column address 12 bit row address 2 bit bank select Note: This Configuration supports 256k cells storage per direction. (50% memory remains unused) 4Mb * 16 (4 bank) (256Mb Types) 2 SDRAMs: 9 bit column address 12 bit row address (13) 2 bit bank select Note: This Configuration supports 256k cells storage per direction. (75% memory remains unused; one of the 13 memory address bits remains unused) The following table gives an example of supported SSRAM configurations: Table 5-12 SSRAM and SDRAM Type Examples Type Configuration SSRAM 1 GALVANTECH GVT71512ZC36 Preliminary Data Sheet 512k * 36 132 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY Table 5-12 SSRAM and SDRAM Type Examples Type Configuration SDRAM 1 Infineon HYB39S64160BT 4 bank * 1M * 16 2 Infineon HYB39S256160BT 4 bank * 4M * 16 5.4.2 Figure 5-9 CSR: Cell Storage SDRAM Interfaces CSR Interface and Connection Example Both CSR Interfaces support 8 bit and 9 bit column address width SDRAM types (see register "MODE2" on Page 325). Preliminary Data Sheet 133 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY 5.4.3 CPR: Cell Pointer SSRAM Interface Figure 5-10 CPR Interface(s) and Connection Example 5.5 SPI: Serial Pheripheral Interface Via the SPI interface the ERC subsystem firmware can be loaded into the internal code RAM during start-up of the device. The SPI Interface supports EEPROMs with an eight bit address space. After a system reset, the ABMP starts reading the first byte out of the connected EEPROM at address 00H. If this byte is equal AAH, the device continues reading out the memory contents. Everytime four bytes are read out of the EEPROM (starting with byte address 01H), the EEPROM interface writes the read information into the code RAM. If the first byte in the EEPROM is not equal AAH, the EEPROM interface stops loading the immediately. The configuration mechanism through the serial interface can be disabled by pin IOPRAMSEL. If this pin is connected to `0', the SPI interface is disabled and the code RAM will be loaded from the internal ROM. 5.5.1 SPI Read Sequence The ABMP selects an external EEPROM by pulling SPICS low. The eight bit read sequence is transmitted followed by the eight bit address. After the read instruction and address is sent, the data stored in the memory at the selected address is shifted in on the SPISI pin. The read operation is terminated by setting SPICS high (see Figure 5-11). Preliminary Data Sheet 134 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY * SPCS 0 1 2 3 4 5 6 7 8 9 14 15 16 17 18 19 20 21 22 23 SPCLK instruction SPSO 0 0 0 0 0 0 8 bit address 1 1 7 6 0 data in SPSI 7 6 5 4 3 2 1 0 Figure 5-11 SPI Read Sequence 5.5.2 SPI Write Sequence Prior to any attempt to write data to an external EEPROM, the write enable latch must be set by issuing the WREN instruction. This is done by setting SPICS low and then clocking out the WREN instruction. After all eight bits of the instruction are transmitted, the SPICS will be brought high to set the write enable latch. Once the write enable latch is set, the user may proceed by issuing a write instruction, followed by the eight bit address and then the data to be written. In order that data will actually be written to the EEPROM, the SPICS is set high after the least significant bit (D0) of the data byte has been clocked in. Refer to Figure 5-12 for detailed illustrations on the byte write sequence. SPCS 0 1 2 3 4 5 6 7 8 9 14 15 16 17 18 19 20 21 22 23 SPCLK instruction SPSO 0 0 0 0 0 0 8 bit address 1 0 7 6 data out 0 7 6 5 4 3 2 1 0 SPSI Figure 5-12 SPI Write Sequence 5.6 QCI: Queue Congestion Indication Interface The Queue Congestion Indication Interface provides threshold crossing information of up to 8k queues of the downstream core. Dedicated queue specific thresholds are Preliminary Data Sheet 135 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY internally supervised using a hysteresis. The threshold exceed information is stored in a bit pattern that is accessible via the QCI Interface in a basic HDLC framing. The QCI Interface supports 2 modi: * Periodic Frame Mode: The pattern is periodically transmitted with an HDLC framing. The transmit clock is provided externally. * Single Step Frame Mode: A single pattern is transmitted with an HDLC framing if the `QCITXFRAME' signal is asserted. The transmit clock is provided externally. The bit-stuffing function is optional. In case of Single Step Frame Mode, the bit-stuffing can be disabled. The HDLC frame is transmitted-octet synchronous starting with the `QCITXFRAME' signal. QueueThresholdIndication(8191..0) Table QTI 0 1 2 8190 8191 read Mini HDLC Engine N-1 7Eh N+1 Frame N 7Eh 1024 Byte (Payload); opt. bit-stuffing CRC16 7Eh 7Eh Note: 1k queues: 128 byte payload 2k queues: 256 byte payload 4k queues: 512 byte payload 8k queues:1024 byte payload QCI Interface Note: At 66 MHz, a complete pattern is transmitted in appr. 0.125ms. QCITXFRAME QCITXCLK QCITXDAT Figure 5-13 QCI Interface Preliminary Data Sheet 136 2001-14-01 Prel. ABMP Data Sheet Interface Description PRELIMINARY The bit-pattern length can be limited to 1k, 2k, 4k or 8k (maximum number of downstream queues). The first data bit of the pattern always represents the threshold status of queue 0, the second bit represents queue 1 respectively (increasing order). Global configuration of the QCI unit is performed in register "DQCIC" on Page 187. The queue specific thresholds are programmed in table QCIT via transfer register "QCIT" on Page 244. 5.7 Test Interface in work 5.8 Clock and Reset Interface 5.8.1 Clocking The ABMP supports different clock domains and clock generation configurations. Please refer to "Clocking System" on Page 54 for further details. 5.8.2 Reset The Reset signal can be asserted anytime asynchronously to the system clock. After detecting an active reset, the ABMP starts internal initialization processes and resets all registers to their reset value. Please refer to chapter "Reset System" on Page 57 for further details. Note: Internal and external RAM initialization must be initiated by software via register "MODE1" on Page 321. Preliminary Data Sheet 137 2001-14-01 Prel. ABMP Data Sheet Memory Structure PRELIMINARY 6 Memory Structure The ABMP is a slave device regarding the microcontroller bus and provides a set of 256 16 bit wide registers. Internal tables are accessed via dedicated transfer registers. Typically the register structure is mapped into the memory address space of the local controller. Preliminary Data Sheet 138 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY 7 Register Description This chapter provides both an overview of the ATM Buffer Manager ABMP Register Set and detailed register descriptions and Table Access descriptions. 7.1 Overview of the ABM Register Set Control and operation of the ABMP chip can be done by directly configuring Status Registers or, to a large extent, by programming the internal tables. Access to these tables is not direct, but occurs via Transfer Registers and Transfer Commands. Any transfer must be prepared by writing appropriate values to the Transfer Registers. Bit positions named 'don't Write' must be masked by writing 1 to the corresponding bit positions in the Mask Register. This avoids overwriting these table bit positions with the Transfer Register contents, which may cause fatal malfunction. The specific table position which should be modified with the Transfer Register contents is selected via Register WAR. Transfer is started by writing the table address to Register MAR and also setting the 'Start' bit. The ABMP device will reset the 'Start' bit after transfer completion. The ABMP contains the following internal tables for configuration: * * * * * * * LCI Table (LCI) Traffic Class Table (TCT) Queue Configuration Table (QCT) Queue Parameter Table 1 (QPT1) Queue Parameter Table 2 (QPT2) Scheduler Block Occupancy Table (SOT) Scheduler Rate Tables (consisting of 4 tables): - SCTI Upstream - SCTI Downstream - SCTF Upstream - SCTF Downstream * Merge Group Table (MGT) * Queue Congestion Indication Table (QCIT) The following illustration gives an overview of all (user accessible) tables and related control/transfer/mask registers: Preliminary Data Sheet 139 2001-14-01 Prel. ABMP Data Sheet Register Description Data Transfer Registers Mask Registers PRELIMINARY LCI Table TCT Table MAR = 00d MAR = 01d Common Mask Register Set: LCI0 LCI1 LCI2 MASK6 TCT0 TCT1 TCT2 TCT3 QCT Table SOT Table MGT Table MAR = 02d MAR = 03d MAR = 07d MASK5 MASK2 MASK4 MASK1 QCT0 QCT1 QCT2 QCT3 QCT4 QCT5 QCT6 SOT0 SOT1 SOT2 SOT3 SOT4 QCI Table DTC Table MAR = 08d MAR = 05d MASK3 MASK0 no Mask no Mask MGT0 MGT1 MGT2 QCIT DTCT Common Table Access Control Registers: Mask Registers Data Transfer Registers MAR WAR ERCT1 ERCT0 UQPT1T1 UQPT1T0 ERCM1 ERCM0 UQPTM3 UQPTM2 AVT Table MAR = 10d QPT1 Table Upstream MAR = 16d UQPT2T3 UQPT2T2 UQPT2T1 UQPT2T0 DQPT1T1 DQPT1T0 DQPT2T3 DQPT2T2 DQPT2T1 DQPT2T0 USCTFT DSCTFT DQPTM2 DQPTM0 USCTFM DSCTFM SCTF Table Upstream MAR = 23d SCTF Table Downstr. MAR = 31d UQPTM2 UQPTM0 DQPTM3 DQPTM2 QPT2 Table Upstream MAR = 17d QPT1 Table Downstr. MAR = 24d QPT2 Table Downstr. MAR = 25d SCTI Table Upstream SCTI Table Downstr. no Mask no Mask USCTI DSCTI SCTI Table Access Control Registers: DSADR USADR Figure 7-1 Table Access Overview The Status Registers and Transfer Registers are described below in Table 7-2. Offset addresses are 16-bit word addresses. Performing Write accesses to 'Reserved Register' addresses is not recommended in order to prevent malfunctions and to guarantee upwards compatibility to future versions of the device. Preliminary Data Sheet 140 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal table entries contain bit-fields for internal device operation only. The different meaning of fields is illustrated by the following color convention used in the register chapter: Table 7-1 Color Color Convention for Internal Table Field Illustration Meaning Grey shaded fields are 'unused'. Reading these fields will return '0'. Green shaded fields require attention by CPU. They can be written or read by CPU; usage depends on the respective field description. Typically green fields must be written for initialization and configuration or read for status query. Blue shaded fields require/allow READ attention by CPU. Typically blue fields provide counter or status information. The CPU MUST NOT write to blue fields. Red shaded fields are for device internal use only and require NO attention by CPU. The CPU MUST NOT write to red fields. Preliminary Data Sheet 141 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 Addr (hex) ABM Registers Overview Register Reset P value (hex) Description See pag e Cell Flow Test Registers 01/11 UCFTST/ DCFTST Upstream/Downstream Cell Flow Test Registers 0000 R/W 152 SDRAM Configuration Registers 02/12 URCFG/ DRCFG Upstream/Downstream SDRAM Configuration Registers 0033 R/W 154 03/13 - Reserved Register 0000 R - 04/14 - Reserved Register 0000 R - Cell Insertion/Extraction and AAL5 Control Registers 05/15 UA5TXHD0/ DA5TXHD0 Upstream/Downstream AAL5 Transmit Header 0 Registers 0000 R/W 155 06/16 UA5TXHD1/ DA5TXHD1 Upstream/Downstream AAL5Transmit Header 1 Registers 0000 R/W 156 07/17 UA5TXDAT0/ DA5TXDAT0 Upstream/Downstream AAL5Transmit Data 0 Registers 0000 R/W 158 08/18 UA5TXDAT1/ DA5TXDAT1 Upstream/Downstream AAL5 Transmit Data 1 Registers 0000 R/W 159 09/19 UA5TXTR/ DA5TXTR Upstream/Downstream AAL5 Transmit Trailer Registers 0000 R/W 160 0A/1A UA5TXCMD/ DA5TXCMD Upstream/Downstream AAL5 Transmit Command Registers 0000 R/W 161 0B/1B UA5RXHD0/ DA5RXHD0 Upstream/Downstream AAL5 Receive Header 0 Registers 0000 R/W 162 0C/1C UA5RXHD1/ DA5RXHD1 Upstream/Downstream AAL5 Receive Header 1 Registers 0000 R/W 164 0D/1D UA5RXDAT0/ DA5RXDAT0 Upstream/Downstream AAL5 Receive Data 0 Registers 0000 R/W 165 0E/1E UA5RXDAT1/ DA5RXDAT1 Upstream/Downstream AAL5 Receive Data 1 Registers 0000 R/W 166 0F/1F Upstream/Downstream AAL5 SAR Status Registers 0000 R/W 167 UA5SARS/ DA5SARS Preliminary Data Sheet 142 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 Addr (hex) ABM Registers Overview (cont'd) Register Description Reset P value (hex) See pag e 0000 R 170 0000 R 170 0000 R 171 0000 R 171 Buffer Occupation Counter Registers 20 UBOC 21 DBOC 22 UNGBOC 23 DNGBOC Upstream/Downstream Buffer Occupation Registers Up-/Downstream Non-Guaranteed Buffer Occupation Registers Buffer Threshold and Occupation Capture Registers 24 UBMTH 25 DBMTH 26 UMAC 27 DMAC 28 UMIC 29 DMIC 2A CLP1DIS Upstream/Downstream Buffer Maximum Threshold Registers Upstream/Downstream Maximum Occupation Capture Registers Upstream/Downstream Minimum Occupation Capture Registers 0000 R/W 172 0000 R/W 172 0000 R 174 0000 R 174 FFFF R 175 FFFF R 175 CLP1 Discard Global Threshold Registers 0000 R/W 176 Configuration Register 0000 R/W 177 Configuration Register 2B CONFIG Backpressure Control Registers 2C UUBPTH0 Upstream UTOPIA Backpressure Threshold Register 0 FFFF R/W 178 2D UUBPTH1 Upstream UTOPIA Backpressure Threshold Register 1 FFFF R/W 179 2E UUBPTH2 Upstream UTOPIA Backpressure Threshold Register 2 FFFF R/W 180 2F UUBPTH3 Upstream UTOPIA Backpressure Threshold Register 3 FFFF R/W 181 30 UBPEI UTOPIA Backpressure Exceed Indication Register 0000 R/W 182 31 DUBPTH0 Downstream UTOPIA Backpressure Threshold Register 0 FFFF R/W 183 32 DUBPTH1 Downstream UTOPIA Backpressure Threshold Register 1 FFFF R/W 184 Preliminary Data Sheet 143 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 ABM Registers Overview (cont'd) Addr (hex) Register Description Reset P value (hex) 33 DUBPTH2 Downstream UTOPIA Backpressure Threshold Register 2 FFFF R/W 185 34 DUBPTH3 Downstream UTOPIA Backpressure Threshold Register 3 FFFF R/W 186 Downstream Queue Congestion Indication Control Register 0080 R/W 187 See pag e QCI Control Registers 35 DQCIC DBA Control Registers 36 DSBT1 Upstream/Downstream DBA Scheduler Block Threshold Register 1 0000 R/W 189 37 DSBT2 Upstream/Downstream DBA Scheduler Block Threshold Register 2 0000 R/W 191 38 DSBT3 Upstream/Downstream DBA Scheduler Block Threshold Register 3 0000 R/W 192 39 DSBT4 Upstream/Downstream DBA Scheduler Block Threshold Register 4 0000 R/W 194 3A DBACTC DTC Transfer Register 0000 R 197 LCI Table Transfer Registers LCIC, LCI1, LCI2 3B LCI0 LCI Transfer Register 0 0000 R/W 200 3C LCI1 LCI Transfer Register 1 0000 R/W 201 3D LCI2 LCI Transfer Register 2 0000 R/W 202 Traffic Class Table Transfer Registers TCT0, TCT1, TCT2, TCT3 3E TCT0 TCT Transfer Register 0 0000 R/W 206 3F TCT1 TCT Transfer Register 1 0000 R/W 208 40 TCT2 TCT Transfer Register 2 0000 R/W 211 41 TCT3 TCT Transfer Register 3 0000 R/W 213 Queue Configuration Table Transfer Registers QCT0..6 42 QCT0 Queue Configuration Transfer Register 0 0000 R/W 220 43 QCT1 Queue Configuration Transfer Register 1 0000 R/W 221 44 QCT2 Queue Configuration Transfer Register 2 0000 R/W 224 45 QCT3 Queue Configuration Transfer Register 3 0000 R/W 226 Preliminary Data Sheet 144 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 ABM Registers Overview (cont'd) Reset P value (hex) Addr (hex) Register Description 46 QCT4 Queue Configuration Transfer Register 4 0000 R/W 228 47 QCT5 Queue Configuration Transfer Register 5 0000 R/W 228 48 QCT6 Queue Configuration Transfer Register 6 0000 R/W 229 See pag e Scheduler Occupancy Table Transfer Registers SOT0..SOT4 49 SOT0 SOT Transfer Register 0 0000 R/W 231 4A SOT1 SOT Transfer Register 1 0000 R/W 232 4B SOT2 SOT Transfer Register 2 0000 R/W 232 4C SOT3 SOT Transfer Register 3 0000 R/W 233 4D SOT4 SOT Transfer Register 4 0000 R/W 234 Merge Group Table 4E MGT0 MGT Transfer Register 0 0000 R/W 236 4F MGT1 MGT Transfer Register 1 0000 R/W 237 50 MGT2 MGT Transfer Register 2 0000 R/W 237 51 - Reserved Register 0000 R/W - 52 - Reserved Register 0000 R/W - 53 - Reserved Register 0000 R/W - 54 - Reserved Register 0000 R/W - Mask Registers for Read/Write transfer access control of LCI-, Traffic Class-, Queue Configuration-, Scheduler Occupancy and Merge Group Tables 55/56 MASK0/ MASK1 Table Access Mask Registers 0/1 0000 R/W 238 57/58 MASK2/ MASK3 Table Access Mask Registers 2/3 0000 R/W 239 59/5A MASK4/ MASK5 Table Access Mask Registers 4/5 0000 R/W 240 5B MASK6 Table Access Mask Registers 6 0000 R/W 241 Queue Congestion Indication Table 5C QCIT QCIT Transfer Register 0000 R/W 244 5D - Reserved Register 0000 R/W - 5E - Reserved Register 0000 R/W - Preliminary Data Sheet 145 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 ABM Registers Overview (cont'd) Reset P value (hex) Addr (hex) Register Description 5F - Reserved Register See pag e 0000 R/W - Rate Shaper CDV Registers 60/80 - Reserved Register 0000 R - 61/81 - Reserved Register 0000 R - 62/82 UCDV/ DCDV Upstream/Downstream Rate Shaper CDV Registers 0000 R/W 245 63/83 - Reserved Register 0000 R - 64/84 - Reserved Register 0000 R - Queue Parameter Tables 1 and 2 Mask Registers 65/85 UQPTM0/ DQPTM0 Upstream/Downstream Queue Parameter Table Mask Registers 0 0000 R/W 246 66/86 UQPTM1/ DQPTM1 Upstream/Downstream Queue Parameter Table Mask Registers 1 0000 R/W 247 67/87 UQPTM2/ DQPTM2 Upstream/Downstream Queue Parameter Table Mask Registers 2 0000 R/W 248 68/88 UQPTM3/ DQPTM3 Upstream/Downstream Queue Parameter Table Mask Registers 3 0000 R/W 249 69/89 UQPTM4/ DQPTM4 Upstream/Downstream Queue Parameter Table Mask Registers 4 0000 R/W 250 6A/8A UQPTM5/ DQPTM5 Upstream/Downstream Queue Parameter Table Mask Registers 5 0000 R/W 251 6B/8B USCONF/ DSCONF Upstream/Downstream Scheduler Configuration Registers 0000 R/W 252 6C/8C - Reserved Register 0000 R - 6D/8D - Reserved Register 0000 R - 6E/8E - Reserved Register 0000 R - 6F/8F Reserved Register 0000 R - - Queue Parameter Tables 1 and 2 Transfer Registers 70/90 UQPT1T0/ DQPT1T0 Upstream/Downstream QPT1 Table Transfer Register 0 0000 R/W 255 71/91 UQPT1T1/ DQPT1T1 Upstream/Downstream QPT1 Table Transfer Register 1 0000 R/W 256 Preliminary Data Sheet 146 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 ABM Registers Overview (cont'd) Reset P value (hex) Addr (hex) Register Description 72/92 UQPT2T0/ DQPT2T0 Upstream/Downstream QPT2 Table Transfer Register 0 0000 R/W 259 73/93 UQPT2T1/ DQPT2T1 Upstream/Downstream QPT2 Table Transfer Register 1 0000 R/W 259 74/94 UQPT2T2/ DQPT2T2 Upstream/Downstream QPT2 Table Transfer Register 2 0000 R/W 260 75/95 UQPT2T3/ DQPT2T3 Upstream/Downstream QPT2 Table Transfer Register 3 0000 R/W 261 76/96 - Reserved Register 0000 R/W - 77/97 - Reserved Register 0000 R/W - 78/98 - Reserved Register 0000 R/W - 79/99 - Reserved Register 0000 R/W - 7A/9A - Reserved Register 0000 R/W - 7B/9B - Reserved Register 0000 R/W - 7C/9C - Reserved Register 0000 R/W - 7D/9D - Reserved Register 0000 R/W - 7E/9E - Reserved Register 0000 R/W - 7F/9F Reserved Register 0000 R/W - - See pag e Upstream/Downstream Scheduler Configuration Table Transfer/Mask Registers, SDRAM Refresh Registers, UTOPIA Port Select of Common Real Time Queue Registers A0/B8 USADR/ DSADR Upstream/Downstream SCTI Address Registers 0000 R/W 263 A1/B9 USCTI/ DSCTI Upstream/Downstream SCTI Transfer Registers 0000 R/W 264 A2/BA UECRI/ DECRI Upstream/Downstream Empty Cycle Rate Integer Part Registers 0000 R/W 267 A3/BB UECRF/ DECRF Upstream/Downstream Empty Cycle Rate Fractional Part Registers 0000 R/W 270 A4/BC UCRTQ/ DCRTQ Upstream/Downstream Common Real Time Queue UTOPIA Port Select Registers 0000 R/W 272 Preliminary Data Sheet 147 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 Addr (hex) ABM Registers Overview (cont'd) Register Reset P value (hex) Description See pag e A5/BD USCTFM/ DSCTFM Upstream/Downstream SCTF Mask Registers 0000 R/W 272 A6/BE USCTFT/ DSCTFT Upstream/Downstream SCTF Transfer Registers 0000 R/W 275 A7/BF - Reserved Register 0000 R - Scheduler Enable Registers A8/C0 USCEN0/ DSCEN0 Upstream/Downstream Scheduler Enable 0 Registers 0000 R/W 277 A9/C1 USCEN1/ DSCEN1 Upstream/Downstream Scheduler Enable 1 Registers 0000 R/W 277 AA/C2 USCEN2/ DSCEN2 Upstream/Downstream Scheduler Enable 2 Registers 0000 R/W 278 AB/C3 USCEN3/ DSCEN3 Upstream/Downstream Scheduler Enable 3 Registers 0000 R/W 279 AC/C4 USCEN4/ DSCEN4 Upstream/Downstream Scheduler Enable 4 Registers 0000 R/W 279 AD/C5 USCEN5/ DSCEN5 Upstream/Downstream Scheduler Enable 5 Registers 0000 R/W 280 AE/C6 USCEN6/ DSCEN6 Upstream/Downstream Scheduler Enable 6 Registers 0000 R/W 281 AF/C7 USCEN7/ DSCEN7 Upstream/Downstream Scheduler Enable 7 Registers 0000 R/W 281 Common Real Time Queue Rate Registers B0/C8 UCRTRI/ DCRTRI Upstream/Downstream CRT Rate Integer Registers 0000 R/W 282 B1/C9 UCRTRF/ DCRTRF Upstream/Downstream CRT Rate Fractional Registers 0000 R/W 283 B2 - Reserved Register 0000 R - B3 - Reserved Register 0000 R - B4 - Reserved Register 0000 R - B5 - Reserved Register 0000 R - B6 - Reserved Register 0000 R - Preliminary Data Sheet 148 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 ABM Registers Overview (cont'd) Reset P value (hex) Addr (hex) Register Description B7 - Reserved Register 0000 R See pag e - ERC Registers CA ERCT0 AVT Table Transfer Register 0 0000 R/W 286 CB ERCT1 AVT Table Transfer Register 1 0000 R/W 287 CC ERCM0 AVT Table Access Mask Register 0 0000 R/W 288 CD ERCM1 AVT Table Access Mask Register 1 0000 R/W 289 CE - Reserved Register 0000 R - CF - Reserved Register 0000 R - D0 - Reserved Register 0000 R - D1 - Reserved Register 0000 R - D2 ERCMB0 ERC MailBox Register 0 0000 R/W 290 D3 ERCMB1 ERC MailBox Register 1 0000 R/W 291 D4 ERCMB2 ERC MailBox Register 2 0000 R/W 292 D5 ERCCONF0 ERC Configuration Register 0 0000 R/W 293 D6 ERCCONF1 ERC Configuration Register 1 0000 R/W 294 PLL Control Registers D7 PLL1CONF PLL1 Configuration Register 0000 R/W 296 D8 PLL2CONF PLL2 Configuration Register 0000 R/W 298 D9 PLLTST PLL Test Register 0000 R/W 300 ERC Register Access Control DA ERCRAC ERC Register Access Control Register 0000 R/W 301 DB ERCRAM ERC Register Access Mask Register 0000 R/W 303 Reserved Test Registers DC - Reserved Register 0000 R/W - DD - Reserved Register 0000 R/W - DE - Reserved Register 0000 R/W - DF - Reserved Register 0000 R/W - E0 - Reserved Register 0000 R/W - ABM Version Code Registers E1 VERL Preliminary Data Sheet Version Number Low Register 149 F083 R 304 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 ABM Registers Overview (cont'd) Addr (hex) Register Description E2 VERH Version Number High Register Reset P value (hex) See pag e 1007 R 304 Interrupt Status/Mask Registers E3 ISRU Interrupt Status Register Upstream 0000 R/W 305 E4 ISRD Interrupt Status Register Downstream 0000 R/W 308 E5 ISRC Interrupt Status Register Common 0000 R/W 311 E6 IMRU Interrupt Mask Register Upstream 0000 R/W 312 E7 IMRD Interrupt Mask Register Downstream 0000 R/W 313 E8 IMRC Interrupt Mask Register Common 0000 R/W 314 E9 ISRDBA Interrupt Status Register DBA 0000 R/W 315 EA IMRDBA Interrupt Mask Register DBA 0000 R/W 316 RAM Select Registers EB MAR Memory Address Register 0000 R/W 317 EC WAR Word Address Register 0000 R/W 319 Global ABM Status and Mode Registers ED STATUS ABM STATUS Register 0000 R/W 320 EE MODE1 ABM Mode 1 Register 0000 R/W 321 EF MODE2 ABM Mode 2 Register 0000 R/W 325 UTOPIA Configuration Registers F0 UTRXCFG Upstream/Downstream UTOPIA Receive Configuration Register 0001 R/W 327 F1 UUTRXP0 Upstream UTOPIA Receive Port Register 0 0000 R/W 329 F2 UUTRXP1 Upstream UTOPIA Receive Port Register 1 0000 R/W 329 F3 UUTRXP2 Upstream UTOPIA Receive Port Register 2 0000 R/W 330 F4 DUTRXP0 Downstream UTOPIA Receive Port Register 0 0000 R/W 331 F5 DUTRXP1 Downstream UTOPIA Receive Port Register 1 0000 R/W 331 Preliminary Data Sheet 150 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-2 ABM Registers Overview (cont'd) Reset P value (hex) Addr (hex) Register Description F6 DUTRXP2 Downstream UTOPIA Receive Port Register 2 0000 R/W 332 F7 UUTTXCFG Upstream UTOPIA Transmit Configuration Register 0000 R/W 333 F8 DUTTXCFG Downstream UTOPIA Transmit Configuration Register 0001 R/W 334 F9 UUTTXP0 Upstream UTOPIA Transmit Port Register 0 0000 R/W 336 FA UUTTXP1 Upstream UTOPIA Transmit Port Register 1 0000 R/W 336 FB UUTTXP2 Upstream UTOPIA Transmit Port Register 2 0000 R/W 337 FC DUTTXP0 Downstream UTOPIA Transmit Port Register 0 0000 R/W 338 FD DUTTXD1 Downstream UTOPIA Transmit Port Register 1 0000 R/W 338 FE DUTTXD2 Downstream UTOPIA Transmit Port Register 2 0000 R/W 339 See pag e Test Registers/Special Mode Registers FF TEST Preliminary Data Sheet TEST Register 0000 R/W 340 151 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY 7.2 Detailed Register Description Register 1 UCFTST/DCFTST Upstream/Downstream Cell Flow Test Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UCFTST Typical Usage: Written by CPU to test internal integrity functions during special system test scenarios Bit 15 14 01H 13 DCFTST 12 11 11H 10 9 8 2 1 0 Unused(15:8) Bit 7 6 5 4 3 Unused(7:2) TSTBIP TSTQID * TSTBIP TSTQID Test BIP-8 Supervision 0 Normal Operation: BIP-8 for cell protection is generated normally. No 'BIP8ER' interrupt should occur indicating a cell storage failure. 1 Test Mode: Least Significant Bit (LSB) of BIP-8 is inverted to test BIP-8 checking function. An 'BIP8ER' (Register 110: ISRU, Register 111: ISRD) interrupt is generated whenever a cell is Read out of the Cell Buffer RAM. Test Queue ID Supervision (see "Cell Queue Supervision" on Page 76) Preliminary Data Sheet 152 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY 0 Normal Operation: A correct QID is generated. No 'BUFER5' interrupt should occur indicating an internal queue pointer failure. 1 Test Mode: The LSB of the QID is inverted to test the QID checking function. A 'BUFER5' (Register 110: ISRU, Register 111: ISRD) interrupt is generated whenever a cell is Read out out the Cell Buffer RAM. Note: The respective QID value is stored with each cell when written to the appropriate queue in the cell storage RAM. The ABMP checks the stored QID value against the supposed QID when a cell is read back from the cell storage RAM. Preliminary Data Sheet 153 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 2 URCFG/DRCFG Upstream/Downstream SDRAM Configuration Registers CPU Accessibility: Read/Write Reset Value: 0033H Offset Address: URCFG Typical Usage: (Reserved) Bit 15 14 02H 13 DRCFG 12 11 12H 10 9 8 2 1 0 Reserved(15:8) Bit 7 6 5 4 3 Reserved(7:0) Note: These registers are for internal use only. Do not to Write a value different from the Reset Value 0033H to Registers URCFG/DRCFG. Preliminary Data Sheet 154 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 3 UA5TXHD0/DA5TXHD0 Upstream/Downstream AAL5 Transmit Header 0 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5TXHD0 Typical Usage: Written by CPU Bit 15 14 13 05H DA5TXHD0 12 11 10 15H 9 8 1 0 LCI(11:4), VPI(11:4) or GFC(3:0) | VPI(7:4), LCI(11:4), VPI(11:4) or GFC(3:0) | VPI(7:4), Bit 7 6 5 4 3 LCI(3:0), VPI(3:0), LCI(3:0), VPI(3:0) 2 VCI(15:12), LCI(15:12), VCI(15:12), VCI(15:12) First 16 bit word of an ATM cell. The ABM does not interpret these bit fields, but copy them into ATM cells that are inserted during AAL5 packet segmentation process. Inserted cells are forwarded to the ABM like any cell received by the respective UTOPIA interface. Thus the bit field usage must comply to the selected LCI mapping mode in the particular application. VPI(11:0) or GFC(3:0) | VPI(7:0) or LCI(11:0) The meaning of this bit field depends on the selected LCI mapping mode in Register Mode (refer ???): MODE->LCIMOD(1:0): '00' '01' '10' '11' Preliminary Data Sheet VPI Address translated mode: LCI(11:0) VPI transparent mode: * NNI cell format: 12 bit VPI field * UNI cell format: 4 bit GFC field and 8 bit VPI field VPI Address translated mode: LCI(11:0) VPI transparent mode: * NNI cell format: 12 bit VPI field * UNI cell format: 4 bit GFC field and 8 bit VPI field 155 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY VCI(15:12) or LCI(15:12) or VCI(15:12) Register 4 The meaning of this bit field depends on the selected LCI mapping mode in Register Mode (refer ???): MODE->LCIMOD(1:0): '00' '01' '10' '11' VCI transparent mode: VCI(15:12) VCI Address translated mode: LCI(15:12) VCI transparent mode: VCI(15:12) VCI transparent mode: VCI(15:12) UA5TXHD1/DA5TXHD1 Upstream/Downstream AAL5Transmit Header 1 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5TXHD1 Typical Usage: Written by CPU Bit 15 14 13 06H DA5TXHD1 12 11 16H 10 9 8 2 1 0 VCI(11:4), LCI(11:4), VCI(11:4), VCI(11:4) Bit 7 6 5 4 3 VCI(3:0), LCI(3:0), VCI(3:0), VCI(3:0) Preliminary Data Sheet PT(2:0) 156 CLP 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Second 16 bit word of an ATM cell. The ABM does not interpret these bit fields, but copy them into ATM cells that are inserted during AAL5 packet segmentation process. Inserted cells are forwarded to the ABM like any cell received by the respective UTOPIA interface. Thus the bit field usage must comply to the selected LCI mapping mode in the particular application. VCI(11:0) or LCI(11:0) The meaning of this bit field depends on the selected LCI mapping mode in Register Mode (refer ???): MODE->LCIMOD(1:0): '00' '01' '10' '11' PT(2:0) VCI transparent mode: VCI(11:0) VCI Address translated mode: LCI(11:0) VCI transparent mode: VCI(11:0) VCI transparent mode: VCI(11:0) Payload Type Field in ATM cell Header PT(0) is automatically handled by the ABM (End of Packet indication set to '1' in last cell of any AAL5 segmented packet). PT(1) ('Congestion Experienced') may be overwritten by CPU anytime during segmentation process and will be inserted in the following AAL5 cell generated. CLP Cell Loss Priority Bit in ATM cell Header The CLP bit is copied transparently and may be overwritten (changed) by CPU anytime during segmentation process (new value will be inserted in the following AAL5 cell generated). Preliminary Data Sheet 157 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 5 UA5TXDAT0/DA5TXDAT0 Upstream/Downstream AAL5Transmit Data 0 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5TXDAT0 07H Typical Usage: Written by CPU Bit 15 14 13 DA5TXDAT0 12 11 17H 10 9 8 2 1 0 Octet(4n)(7:0) Bit 7 6 5 4 3 Octet(4n+1)(7:0) Cell Transmit Data Transfer Register Octet(4n)(7:0) Payload data Octet (4n) Octet(4n+1)(7:0) Payload data Octet (4n+1) The 48 payload data octets of a cell to be inserted in either upstream or downstream direction are written by 12 consecutive write accesses to registers UTXDAT0/DTXDAT0 and UTXDAT1/ DTXDAT1 in alternating manner: cycle n=0: Octet 0 and 1: write to UTXDAT0/DTXDAT0 cycle n=0: Octet 2 and 3: write to UTXDAT1/DTXDAT1 cycle n=1: Octet 4 and 5: write to UTXDAT0/DTXDAT0 cycle n=1: Octet 6 and 7: write to UTXDAT1/DTXDAT1 ... cycle n=11: Octet 44 and 45: write to UTXDAT0/DTXDAT0 cycle n=11: Octet 46 and 47: write to UTXDAT1/DTXDAT1 Preliminary Data Sheet 158 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 6 UA5TXDAT1/DA5TXDAT1 Upstream/Downstream AAL5 Transmit Data 1 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5TXDAT1 08H Typical Usage: Written by CPU Bit 15 14 13 DA5TXDAT1 18H 12 11 10 9 8 2 1 0 Octet(4n+2)(7:0) Bit 7 6 5 4 3 Octet(4n+3)(7:0) Cell Transmit Data Transfer Register Octet(4n+2)(7:0) Payload data Octet (4n+2) Octet(4n+3)(7:0) Payload data Octet (4n+3) The 48 payload data octets of a cell to be inserted in either upstream or downstream direction are written by 12 consecutive write accesses to registers UTXDAT0/DTXDAT0 and UTXDAT1/ DTXDAT1 in alternating manner: cycle n=0: Octet 0 and 1: write to UTXDAT0/DTXDAT0 cycle n=0: Octet 2 and 3: write to UTXDAT1/DTXDAT1 cycle n=1: Octet 4 and 5: write to UTXDAT0/DTXDAT0 cycle n=1: Octet 6 and 7: write to UTXDAT1/DTXDAT1 ... cycle n=11: Octet 44 and 45: write to UTXDAT0/DTXDAT0 cycle n=11: Octet 46 and 47: write to UTXDAT1/DTXDAT1 Preliminary Data Sheet 159 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 7 UA5TXTR/DA5TXTR Upstream/Downstream AAL5 Transmit Trailer Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5TXTR Typical Usage: Written by CPU Bit 15 14 13 09H DA5TXTR 12 11 19H 10 9 8 2 1 0 CPCSUU(7:0) Bit 7 6 5 4 3 CPI(7:0) CPCS-UU(7:0) Common Part Convergence Sublayer User to User Indication The CPCS-UU bit field is copied transparently into the CPCS-PDU trailer in the last cell of a AAL5 segmented packet. CPI(7:0) Common Part Indicatior The CPI bit field is copied transparently into the CPCS-PDU trailer in the last cell of a AAL5 segmented packet. Preliminary Data Sheet 160 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 8 UA5TXCMD/DA5TXCMD Upstream/Downstream AAL5 Transmit Command Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5TXCMD 0AH Typical Usage: Written by CPU Bit 15 14 13 DA5TXCMD 1AH 12 AAL5EN Bit 7 11 10 9 8 2 1 0 PLENGTH(14:8) 6 5 4 3 PLENGTH(7:0) AAL5EN AAL5 Segmentation Enable This bit enables AAL5 segmentation process accompanied by the payload length octet counter PLENGTH: '0' AAL5 segmentation is disabled. Payload data octets written to the cell transmit data registers are ignored. Note: Setting AAL5EN='0' during an active packet segmentation process leads to an abort of the packet, i.e. the current cell is inserted with PT(0)='1' (Endof Packet indication) and CPCSSDU Length field of the trailer set to zero. To abort it is recommended to write all zero to the register: AAL5EN | PLENGTH(14:0) = 0000H '1' PLENGTH(14:0) AAL5 segmentation is enabled. Payload data octets written to the cell transmit data registers are processed and the CPCS-PDU trailer is automatically appended in the last cell controlled by the payload length octet counter. Payload Length Octet Counter Preliminary Data Sheet 161 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY This bit-field represents the number of PDU payload octets for the current packet and is equal to the CPCS-SDU length field which is automatically inserted in the PDU trailer (last cell of the packet). The ABM uses this counter value to control the AAL5 segmentation process. Note: The maximum supported CPCS-SDU length is 32767 octets. Register 9 UA5RXHD0/DA5RXHD0 Upstream/Downstream AAL5 Receive Header 0 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5RXHD0 0BH Typical Usage: Read by CPU Bit 15 14 13 DA5RXHD0 1BH 12 11 10 9 8 1 0 LCI(11:4), VPI(11:4) or GFC(3:0) | VPI(7:4), LCI(11:4), VPI(11:4) or GFC(3:0) | VPI(7:4), Bit 7 6 5 4 3 LCI(3:0), VPI(3:0), LCI(3:0), VPI(3:0) Preliminary Data Sheet 2 VCI(15:12), LCI(15:12), VCI(15:12), VCI(15:12) 162 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY First 16 bit word of an ATM cell. The ABMP SAR unit does not interpret these bit fields, but copy them from ATM cells that are extracted during AAL5 packet reassembly process. Extracted cells are forwarded from the ABMP like any cell to be transmitted by the respective UTOPIA interface. Thus the bit field usage depends on the selected LCI mapping mode in the particular application. From scheduler point of view the reassembly unit is addressed as UTOPIA port number 31D. VPI(11:0) or GFC(3:0) | VPI(7:0) or LCI(11:0) The meaning of this bit field depends on the selected LCI mapping mode in Register Mode1: MODE1->LCIMOD(1:0): '00' '01' '10' '11' VCI(15:12) or LCI(15:12) or VCI(15:12) VPI Address translated mode: LCI(11:0) VPI transparent mode: * NNI cell format: 12 bit VPI field * UNI cell format: 4 bit GFC field and 8 bit VPI field VPI Address translated mode: LCI(11:0) VPI transparent mode: * NNI cell format: 12 bit VPI field * UNI cell format: 4 bit GFC field and 8 bit VPI field The meaning of this bit field depends on the selected LCI mapping mode in Register Mode1: MODE1->LCIMOD(1:0): '00' '01' '10' '11' Preliminary Data Sheet VCI transparent mode: VCI(15:12) VCI Address translated mode: LCI(15:12) VCI transparent mode: VCI(15:12) VCI transparent mode: VCI(15:12) 163 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 10 UA5RXHD1/DA5RXHD1 Upstream/Downstream AAL5 Receive Header 1 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5RXHD1 0CH Typical Usage: Read by CPU Bit 15 14 13 DA5RXHD1 1CH 12 11 10 9 8 2 1 0 VCI(11:4), LCI(11:4), VCI(11:4), VCI(11:4) Bit 7 6 5 4 3 VCI(3:0), LCI(3:0), VCI(3:0), VCI(3:0) PT(2:0) CLP First 16 bit word of an ATM cell. The ABMP SAR unit does not interpret these bit fields, but copy them from ATM cells that are extracted during AAL5 packet reassembly process. Extracted cells are forwarded from the ABMP like any cell to be transmitted by the respective UTOPIA interface. Thus the bit field usage depends on the selected LCI mapping mode in the particular application. From scheduler point of view the reassembly unit is addressed as UTOPIA port number 31D. VCI(11:0) or LCI(11:0) The meaning of this bit field depends on the selected LCI mapping mode in Register Mode1: MODE1->LCIMOD(1:0): '00' '01' '10' '11' PT(2:0) VCI transparent mode: VCI(11:0) VCI Address translated mode: LCI(11:0) VCI transparent mode: VCI(11:0) VCI transparent mode: VCI(11:0) Payload Type Field in ATM cell Header Preliminary Data Sheet 164 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY PT(0) is automatically handled by the ABM (End of Packet detection). Note: OAM or RM cells detected with PT(2)='1' are discarded by the reassembly unit and ignored for the packet reassembly process. Thus packet reassembly is not disturbed by inserted OAM cells. CLP Cell Loss Priority Bit in ATM cell Header The CLP bit is copied transparently from the ATM cell. Register 11 UA5RXDAT0/DA5RXDAT0 Upstream/Downstream AAL5 Receive Data 0 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5RXDAT0 0DH Typical Usage: Read by CPU Bit 15 14 13 DA5RXDAT0 1DH 12 11 10 9 8 2 1 0 Octet(4n)(7:0) Bit 7 6 5 4 3 Octet(4n+1)(7:0) Cell Receive Data Transfer Register Octet(4n)(7:0) Payload data Octet (4n) Octet(4n+1)(7:0) Payload data Octet (4n+1) Preliminary Data Sheet 165 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY The 48 payload data octets of a cell extracted from either upstream or downstream direction are read by 12 consecutive read accesses to registers URXDAT0/DRXDAT0 and URXDAT1/DRXDAT1 in alternating manner: cycle n=0: Octet 0 and 1: read from URXDAT0/DRXDAT0 cycle n=0: Octet 2 and 3: read from URXDAT1/DRXDAT1 cycle n=1: Octet 4 and 5: read from URXDAT0/DRXDAT0 cycle n=1: Octet 6 and 7: read from URXDAT1/DRXDAT1 ... cycle n=11: Octet 44 and 45: read from URXDAT0/DRXDAT0 cycle n=11: Octet 46 and 47: read from URXDAT1/DRXDAT1 Register 12 UA5RXDAT1/DA5RXDAT1 Upstream/Downstream AAL5 Receive Data 1 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5RXDAT1 0EH Typical Usage: Read by CPU Bit 15 14 13 DA5RXDAT1 1EH 12 11 10 9 8 2 1 0 Octet(4n+2)(7:0) Bit 7 6 5 4 3 Octet(4n+3)(7:0) Preliminary Data Sheet 166 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Cell Receive Data Transfer Register Octet(4n)(7:0) Payload data Octet (4n) Octet(4n+1)(7:0) Payload data Octet (4n+1) The 48 payload data octets of a cell extracted from either upstream or downstream direction are read by 12 consecutive read accesses to registers URXDAT0/DRXDAT0 and URXDAT1/DRXDAT1 in alternating manner: cycle n=0: Octet 0 and 1: read from URXDAT0/DRXDAT0 cycle n=0: Octet 2 and 3: read from URXDAT1/DRXDAT1 cycle n=1: Octet 4 and 5: read from URXDAT0/DRXDAT0 cycle n=1: Octet 6 and 7: read from URXDAT1/DRXDAT1 ... cycle n=11: Octet 44 and 45: read from URXDAT0/DRXDAT0 cycle n=11: Octet 46 and 47: read from URXDAT1/DRXDAT1 Register 13 UA5SARS/DA5SARS Upstream/Downstream AAL5 SAR Status Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UA5SARS Typical Usage: Read and written by CPU Bit Bit PE 0FH DA5SARS 15 14 13 12 11 PE CRC ERR ILEN MFLE RAB 7 6 5 4 3 WAIT SP SAB SE 1FH 10 9 OV(1:0) 2 8 RXS 1 0 unused(3:0) Packet End A `1' indicates that with the preceeding read to register UA5RXDAT0/DA5RXDAT0 or UA5RXDAT1/DA5RXDAT1 the last two bytes of the current packet have been read. Preliminary Data Sheet 167 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY CRCERR CRC Error A `1' indicates that the CRC32 of the current packet is erroneous. ILEN Illegal Length A `1' indicates that the length of the current packet is erroneous, i.e the number of octets does not match the length field in the AAL5 trailer or exceeds the maximum supported packet length of 32768 octets. MFLE Maximum Frame Length Exceeded A `1' indicates that the length of the current packet exceeds the maximum supported packet length of 32768 octets. RAB Receive Abort A `1' indicates that the length field of the current packet is zero indicating an aborted or corrupted packet. OV(1:0) Octets Valid This bit field indicates the number of valid octets in registers UA5RXDAT0 and UA5RXDAT1 or DA5RXDAT0 and DA5RXDAT1 respectively. RXS Receive Packet Start A `1' indicates that the first octets of a new packet are available in registers UA5RXDAT0 and UA5RXDAT1 or DA5RXDAT0 and DA5RXDAT1 respectively. WAIT Wait A `1' indicates that no valid octets are available in registers UA5RXDAT0 and UA5RXDAT1 or DA5RXDAT0 and DA5RXDAT1 respectively. Read access to any read register while WAIT is asserted results into an error interrupt. Preliminary Data Sheet 168 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY SP Segmentation Pending A `1' indicates that a cell is ready to be transmitted towards the ABMP core. A cell is ready either when 48 octets have been written to UA5TXDAT0 and UA5TXDAT1 or DA5TXDAT0 and DA5TXDAT1 respectively or when the last cell is being built. Bit `SP' is set when the 48-byte transmit buffer is full and it is reset as soon as at least 4 octet space is available for new octets. The microprocessor has to poll this bit before writing the next 48-octet bunch or beginning a new packet. If the microprocessor attempts to write to UA5TXDAT0 and UA5TXDAT1 or DA5TXDAT0 and DA5TXDAT1 respectively while `SP' is set, an interrupt is generated and the write access is delayed by the READY signal. SAB Segmentation Abort A `1' indicates that the transmission of a packet has been aborted because the enable bit EN was reset by the microprocessor before the transmission was completed. The AAL5 unit automatically closed the packet with an abort sequence in the last cell (length field set to zero). Note: Status bit `SE' is not set in this case. SE Segmentation Ended A `1' indicates that the transmission of a packet has been completed successfully. Preliminary Data Sheet 169 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 14 UBOC/DBOC Upstream/Downstream Buffer Occupation Registers CPU Accessibility: Read only Reset Value: 0000H Offset Address: UBOC Typical Usage: Read by CPU Bit 15 14 20H 13 DBOC 12 11 21H 10 9 8 2 1 0 UBOC/DBOC(17:10) Bit 7 6 5 4 3 UBOC/DBOC(9:2) UBOC(17:2) Upstream Buffer Occupation Counter DBOC(17:2) Downstream Buffer Occupation Counter These bit fields represent the most significant 16-bits of the internal 18 bit wide counters reflecting the number of cells currently stored in the upstream/downstream cell storage RAM. The CPU determines the buffer fill level with a granularity of 4 by reading register UBOC/DBOC and left shifting the value by 2: fill_level(17:0) := (xBOC(17:2) << 2) Preliminary Data Sheet 170 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 15 UNGBOC/DNGBOC Up-/Downstream Non-Guaranteed Buffer Occupation Registers CPU Accessibility: Read only Reset Value: 0000H Offset Address: UNGBOC Typical Usage: Read by CPU Bit 15 14 13 22H DNGBOC 12 11 23H 10 9 8 2 1 0 UNGBOC/DNGBOC(17:10) Bit 7 6 5 4 3 UNGBOC/DNGBOC(9:2) * UNGBOC(17:2) Upstream Non-Guaranteed Buffer Occupation Counter DNGBOC(17:2) Downstream Non-Guaranteed Buffer Occupation Counter These bit fields represent the most significant 16-bits of the internal 18 bit wide counters reflecting the number of non-guaranteed cells currently stored in the upstream/downstream cell storage RAM. The CPU determines the number of cells with a granularity of 4 by reading register UNGBOC/DNGBOC and left shifting the value by 2: fill_level(17:0) := (xNGBOC(17:2) << 2) "Non-Guaranteed" cell count refers to cells, that are accepted (stored) because of shared buffer availability although the guaranteed minimum per queue buffer size is already occupied by the specific queue. The sum of all per queue guaranteed buffer sizes virtually devides the global buffer space into a "guaranteed" part and a "nonguaranteed" (shared) part. Note: This counter function has been modified from ABM version 1.x since minimum per queue buffer reservation was introduced in version 2.x. In ABM version 1.1 these counters represented the number stored "non-real-time" cells belonging to traffic classes with the real-time indication bit 'RTind' cleared in the version 1.x traffic class table. Preliminary Data Sheet 171 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 16 UBMTH/DBMTH Upstream/Downstream Buffer Maximum Threshold Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UBMTH Typical Usage: Written by CPU Bit 15 14 24H 13 DBMTH 12 11 25H 10 9 8 2 1 0 UBMTH/DBMTH(17:10) Bit 7 6 5 4 3 UBMTH/DBMTH(9:2) UBMTH(17:2) Upstream Buffer Maximum Threshold DBMTH(17:2) Downstream Buffer Maximum Threshold These bit fields determine a maximum limit for the total upstream and downstream buffer size with a granularity of 4 cells. The values depend on: * The size of the external cell pointer RAM, * Whether the downstream cell storage RAM is connected. See Table 7-3 for recommended values. The CPU programs the maximum number of cells with a granularity of 4 by right shifting the value by 2: xBMTH(17:2) := (maximum_cells(17:0) >> 2) The following table provides typical values and related RAM sizes: Preliminary Data Sheet 172 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY : Table 7-3 External RAM Sizes Cell Pointer Min. SSRAM Required Upstream Cell SDRAM Min. UBMTH UpRequired stream DownBuffer: stream Cell SDRAM e.g. 128 Mb 512 k x 32 bit e.g. 2*(4Mb*16) 128 Mb e.g. 2*(4Mb*16) 3FFFFH 256k cells 3FFFFH 256k cells e.g. 64 Mb 256 k x 32 bit e.g. 1*(2Mb*32) 64 Mb e.g. 1*(2Mb*32) 1FFFFH 128k cells 1FFFFH 128k cells e.g. 32 Mb 128 k x 32 bit 32 Mb 0FFFFH 64k cells e.g. 128 Mb 256 k x 32 bit e.g. 2*(4Mb*16) none 3FFFFH 256k cells 00000H 0 e.g. 64 Mb 128 k x 32 bit e.g. 1*(2Mb*32) none 1FFFFH 128k cells 00000H 0 e.g. 64 k x 32 bit none 0FFFFH 64k cells 32 Mb DBMTH Downstream Buffer: 0FFFFH 64k cells 00000H 0 Note: The upstream cell storage RAM must always be connected. Preliminary Data Sheet 173 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 17 UMAC/DMAC Upstream/Downstream Maximum Occupation Capture Registers CPU Accessibility: Read only, self-clearing on Read Reset Value: 0000H Offset Address: UMAC Typical Usage: Read by CPU Bit 15 14 26H 13 DMAC 12 11 27H 10 9 8 2 1 0 UMAC/DMAC(17:10) Bit 7 6 5 4 3 UMAC/DMAC(9:2) UMAC(17:2) Upstream Maximum Occupation Capture Counter DMAC(17:2) Downstream Maximum Occupation Capture Counter These bit fields represent the most significant 16-bits of the internal 18 bit wide counters reflecting the absolute maximum number of cells stored in the respective external cell buffer since the last Read access (peak cell filling level within measurement interval). The CPU determines the maximum number of cells with a granularity of 4 by reading register UMAC/DMAC and left shifting the value by 2: max_level(17:0) := (xMAC(17:2) << 2) The counter value is automatically cleared to 0000H after Read. Preliminary Data Sheet 174 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 18 UMIC/DMIC Upstream/Downstream Minimum Occupation Capture Registers CPU Accessibility: Read only, self-clearing on Read Reset Value: FFFFH (may be modified by chip logic immediately after reset) Offset Address: UMIC Typical Usage: Read by CPU Bit 15 14 28H 13 DMIC 12 11 29H 10 9 8 2 1 0 UMIC/DMIC(17:10) Bit 7 6 5 4 3 UMIC/DMIC(9:2) UMIC(17:2) Upstream Minimum Occupation Capture Counter DMIC(17:2) Downstream Minimum Occupation Capture Counter These bit fields represent the most significant 16-bits of the internal 18 bit wide counters reflecting the absolute minimum number of cells stored in the respective external cell buffer since the last Read access (minimum cell filling level within measurement interval). The CPU determines the minimum number of cells with a granularity of 4 by reading register UMIC/DMIC and left shifting the value by 2: min_level(17:0) := (xMIC(17:2) << 2) The counter value is automatically cleared to FFFFH after Read. Note: The reset value may be modified by chip logic immediately after reset or clearing read and thus shall not be included in register reset value test programs. Preliminary Data Sheet 175 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 19 CLP1DIS CLP1 Discard Global Threshold Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: CLP1DIS Typical Usage: Written by CPU Bit 15 14 13 2AH 12 11 10 9 8 2 1 0 DCLP1DIS(13:6) Bit 7 6 5 4 3 UCLP1DIS(13:6) UCLP1DIS(13:6) Upstream CLP1 Discard Threshold value DCLP1DIS(13:6) Downstream CLP1 Discard Threshold value These 8-bit values determine a global 14 bit threshold value (granularity of 64 cells) that enables discard of low-priority (CLP='1') cells. The threshold values are compared with the per scheduler low priority cell counter SBOCCLP (Scheduler Block Low Priority Occupancy) (see Internal Table 5:: Scheduler Occupancy Table Transfer Registers SOT0..SOT4) and enables all CLP1 related discard thresholds, i.e. TCT1.BufCiCLP1(7:0) (Register 40: TCT1) TCT2.SbCiCLP1(7:0) (Register 41: TCT2) TCT0.QueueCiCLP1(11:0) (Register 39: TCT0) As a second condition, CLP1 related discard thresholds are only effective, if the specific queue that is asked to accept the cell is associated to a traffic class that has EPD function disabled (EPDen='0', see "Traffic Class Table Transfer Registers TCT0, TCT1, TCT2, TCT3" on Page 203). The CPU programs the threshold with a granularity of 64 cells by right shifting the value by 6: xCLP1DIS(13:6) := (threshold_value(13:0) >> 6) Preliminary Data Sheet 176 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 20 CONFIG Configuration Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: 2BH Typical Usage: Written by CPU Bit 15 14 13 12 11 10 9 8 2 1 0 Unused(13:6) Bit 7 6 5 4 3 Unused(5:0) Reserved1 ABRTQ Reserved1 this bit is for internal use only and must be set at 0 during normal operation. ABRTQ ABR Toggle Queue ID: This global bit controls treatment of RM cells for uni-directional (miniswitch) mode. 0 Normal Operation (set for bi-directional mode). 1 Only RM cells with toggled LCI and QID are modified. Note: The following conditions must apply for proper CI/NI operation: In Bi-directional Mode, the same LCI and the same queue identifier QID must be used for the ABR connection in forward and backward directions; for example, in forward direction LCI=2 and QID=7, in backward direction LCI=2 and QID=7. In Uni-directional Mode, LCI and QID must have the LSB inverted; for example, in forward direction LCI=3 and QID=7, in backward direction LCI=2 and QID=6. The LCI inversion (toggle) is activated by setting the LCI toggle bit in the MODE1 register to 1. Preliminary Data Sheet 177 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 21 UUBPTH0 Upstream UTOPIA Backpressure Threshold Register 0 CPU Accessibility: Read/Write Reset Value: FFFFH Offset Address: UUBPTH0 Typical Usage: Written by CPU Bit 15 14 13 2CH 12 11 10 9 8 2 1 0 UUBPTH0(17:10) Bit 7 6 5 4 3 UUBPTH0(9:2) UUBPTH0(17:2) Upstream UTOPIA Backpressure Threshold 0 This bit field determines the backpressure threshold for the Upstream UTOPIA Receive interface group 0 with a granularity of 4 cells. The CPU programs the threshold with a granularity of 4 by right shifting the value by 2: UUBPTH0(17:2) := (maximum_cells(17:0) >> 2) Preliminary Data Sheet 178 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 22 UUBPTH1 Upstream UTOPIA Backpressure Threshold Register 1 CPU Accessibility: Read/Write Reset Value: FFFFH Offset Address: UUBPTH1 Typical Usage: Written by CPU Bit 15 14 13 2DH 12 11 10 9 8 2 1 0 UUBPTH1(17:10) Bit 7 6 5 4 3 UUBPTH1(9:2) UUBPTH1(17:2) Upstream UTOPIA Backpressure Threshold 1 This bit field determines the backpressure threshold for the Upstream UTOPIA Receive interface group 1 with a granularity of 4 cells. The CPU programs the threshold with a granularity of 4 by right shifting the value by 2: UUBPTH1(17:2) := (maximum_cells(17:0) >> 2) Preliminary Data Sheet 179 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 23 UUBPTH2 Upstream UTOPIA Backpressure Threshold Register 2 CPU Accessibility: Read/Write Reset Value: FFFFH Offset Address: UUBPTH2 Typical Usage: Written by CPU Bit 15 14 13 2EH 12 11 10 9 8 2 1 0 UUBPTH2(17:10) Bit 7 6 5 4 3 UUBPTH2(9:2) UUBPTH2(17:2) Upstream UTOPIA Backpressure Threshold 2 This bit field determines the backpressure threshold for the Upstream UTOPIA Receive interface group 2 with a granularity of 4 cells. The CPU programs the threshold with a granularity of 4 by right shifting the value by 2: UUBPTH2(17:2) := (maximum_cells(17:0) >> 2) Preliminary Data Sheet 180 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 24 UUBPTH3 Upstream UTOPIA Backpressure Threshold Register 3 CPU Accessibility: Read/Write Reset Value: FFFFH Offset Address: UUBPTH3 Typical Usage: Written by CPU Bit 15 14 13 2EH 12 11 10 9 8 2 1 0 UUBPTH3(17:10) Bit 7 6 5 4 3 UUBPTH3(9:2) UUBPTH#(17:2) Upstream UTOPIA Backpressure Threshold # This bit field determines the backpressure threshold for the Upstream UTOPIA Receive interface group 3 with a granularity of 4 cells. The CPU programs the threshold with a granularity of 4 by right shifting the value by 2: UUBPTH3(17:2) := (maximum_cells(17:0) >> 2) Preliminary Data Sheet 181 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 25 UBPEI UTOPIA Backpressure Exceed Indication Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UBPEI Typical Usage: Read by CPU Bit 15 14 30H 13 12 11 10 9 8 2 1 0 Unused(7:0) Bit 7 6 5 4 3 DUBPEI(3:0) UUBPEI(3:0) DUBPEI(3:0) Downstream UTOPIA Backpressure Exceed Indication (3:0) UUBPEI(3:0) Upstream UTOPIA Backpressure Exceed Indication (3:0) These bits indicate the respective UTOPIA backpressure threshold status. Bit i (i = 0..3) active indicates, that the backpressure threshold for group i is exceeded (bit = `H') and the UTOPIA receive interface backpressures the respective UTOPIA ports. Preliminary Data Sheet 182 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 26 DUBPTH0 Downstream UTOPIA Backpressure Threshold Register 0 CPU Accessibility: Read/Write Reset Value: FFFFH Offset Address: DUBPTH0 Typical Usage: Written by CPU Bit 15 14 13 31H 12 11 10 9 8 2 1 0 DUBPTH0(17:10) Bit 7 6 5 4 3 DUBPTH0(9:2) DUBPTH0(17:2) Downstream UTOPIA Backpressure Threshold 0 This bit field determines the backpressure threshold for the Downstream UTOPIA Receive interface group 0 with a granularity of 4 cells. The CPU programs the threshold with a granularity of 4 by right shifting the value by 2: DUBPTH0(17:2) := (maximum_cells(17:0) >> 2) Preliminary Data Sheet 183 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 27 DUBPTH1 Downstream UTOPIA Backpressure Threshold Register 1 CPU Accessibility: Read/Write Reset Value: FFFFH Offset Address: DUBPTH1 Typical Usage: Written by CPU Bit 15 14 13 32H 12 11 10 9 8 2 1 0 DUBPTH1(17:10) Bit 7 6 5 4 3 DUBPTH1(9:2) DUBPTH1(17:2) Downstream UTOPIA Backpressure Threshold 1 This bit field determines the backpressure threshold for the Downstream UTOPIA Receive interface group 1 with a granularity of 4 cells. The CPU programs the threshold with a granularity of 4 by right shifting the value by 2: DUBPTH1(17:2) := (maximum_cells(17:0) >> 2) Preliminary Data Sheet 184 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 28 DUBPTH2 Downstream UTOPIA Backpressure Threshold Register 2 CPU Accessibility: Read/Write Reset Value: FFFFH Offset Address: DUBPTH2 Typical Usage: Written by CPU Bit 15 14 13 33H 12 11 10 9 8 2 1 0 DUBPTH2(17:10) Bit 7 6 5 4 3 DUBPTH2(9:2) DUBPTH2(17:2) Downstream UTOPIA Backpressure Threshold 2 This bit field determines the backpressure threshold for the Downstream UTOPIA Receive interface group 2 with a granularity of 4 cells. The CPU programs the threshold with a granularity of 4 by right shifting the value by 2: DUBPTH2(17:2) := (maximum_cells(17:0) >> 2) Preliminary Data Sheet 185 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 29 DUBPTH3 Downstream UTOPIA Backpressure Threshold Register 3 CPU Accessibility: Read/Write Reset Value: FFFFH Offset Address: DUBPTH3 Typical Usage: Written by CPU Bit 15 14 13 34H 12 11 10 9 8 2 1 0 DUBPTH3(17:10) Bit 7 6 5 4 3 DUBPTH3(9:2) DUBPTH#(17:2) Downstream UTOPIA Backpressure Threshold # This bit field determines the backpressure threshold for the Downstream UTOPIA Receive interface group 3 with a granularity of 4 cells. The CPU programs the threshold with a granularity of 4 by right shifting the value by 2: DUBPTH3(17:2) := (maximum_cells(17:0) >> 2) Preliminary Data Sheet 186 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 30 DQCIC Downstream Queue Congestion Indication Control Register CPU Accessibility: Read/Write Reset Value: 0080H Offset Address: DQCIC Typical Usage: Written by CPU 35H Bit 15 14 13 12 11 10 9 8 Bit 7 6 5 4 3 2 1 0 FSEN BSEN FSEN BSEN BPLEN(1:0) BPLEN(1:0) QCIHYS(3:0) Frame Sync Enable This bit enables frame sync operation controlled by signal `QCITXFRAME'. 0 Frame Sync Operation disabled. Input signal `QCITXFRAME' is ignored. 1 Frame Sync Operation enabled. An active high edge at input signal `QCITXFRAME' starts transmission of a new pattern.. Bit-Stuffing Enable This bit enables HDLC bit-stuffing within the transmission pattern. 0 Bit-stuffing disabled. 1 Bit-stuffing enabled. Bit-Pattern Length This bit-field determines the bit pattern payload length depending on the number of queues that need to be monitored. 00 1k bits (queues 0..1023 are monitored) 01 2k bits (queues 0..2047 are monitored) 10 4k bits (queues 0..4095 are monitored) Preliminary Data Sheet 187 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY 11 QCIHYS(3:0) 8k bits (queues 0..8191 are monitored) Queue Congestion Indication Hysteresis This bit-field determines the hysteresis that is applied to the Queue Congestion Indication threshold evaluation. The queue specific threshold is programmed in table QCIT. The hysteresis determines a lower threshold THhys with THhysi := Thresholdi - Deltai The Deltai value is determined by bit-field DH(2:0) and Thresholdi with: Deltai := Thresholdi >> [QCIHYS(3:0)] The following table shows the operation and resulting example THhysi values for the example of a threshold programmed to 1024 cells: QCIHYS (2:0): Deltai:= 0d 0 1d Thresholdi >>1 THhysi := 512 2d Thresholdi >>2 THhysi := 768 4d Thresholdi >>4 THhysi := 960 8d Thresholdi >>8 THhysi := 1020 10d Thresholdi >>10 Preliminary Data Sheet Example: (hysteresis disabled) 188 THhysi := 1024 hysteresis ineffective) 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 31 DSBT1 Upstream/Downstream DBA Scheduler Block Threshold Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DSBT1 Typical Usage: Written and Read by CPU during initialization Bit 15 14 36H 13 12 11 10 9 8 2 1 0 DSBT1HP(11:4) Bit 7 6 5 4 3 DSBT1LP(11:4) DSBT1HP(11:4) DBA Scheduler Block Threshold 1 High Priority This bit field represents the most significant 8-bits of the internal 12 bit wide High Priority DBA Threshold 1. The threshold value is global, but individually evaluated against all scheduler block specific fill level counter (upstream and downstream) of the same priority class (SBOCCHP). The threshold range is (0..4095) with a granularity of 16 cells. The CPU programs the threshold with a granularity of 4 cells by right shifting the value by 4: DSBT1HP(11:4) := ( threshold_value >> 4) DSBT1LP(11:4) DBA Scheduler Block Threshold 1 Low Priority Preliminary Data Sheet 189 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY This bit field represents the most significant 8-bits of the internal 12 bit wide Low Priority DBA Threshold 1. The threshold value is global, but individually evaluated against all scheduler block specific fill level counter (upstream and downstream) of the same priority class (SBOCCLP). The threshold range is (0..4095) with a granularity of 16 cells. The CPU programs the threshold with a granularity of 4 cells by right shifting the value by 4: DSBT1LP(11:4) := ( threshold_value >> 4) Preliminary Data Sheet 190 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 32 DSBT2 Upstream/Downstream DBA Scheduler Block Threshold Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DSBT2 Typical Usage: Written and Read by CPU during initialization Bit 15 14 37H 13 12 11 10 9 8 2 1 0 DSBT2HP(11:4) Bit 7 6 5 4 3 DSBT2LP(11:4) DSBT2HP(11:4) DBA Scheduler Block Threshold 2 High Priority This bit field represents the most significant 8-bits of the internal 12 bit wide High Priority DBA Threshold 2. The threshold value is global, but individually evaluated against all scheduler block specific fill level counter (upstream and downstream) of the same priority class (SBOCCHP). The threshold range is (0..4095) with a granularity of 16 cells. The CPU programs the threshold with a granularity of 4 cells by right shifting the value by 4: DSBT2HP(11:4) := ( threshold_value >> 4) DSBT2LP(11:4) DBA Scheduler Block Threshold 2 Low Priority Preliminary Data Sheet 191 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY This bit field represents the most significant 8-bits of the internal 12 bit wide Low Priority DBA Threshold 2. The threshold value is global, but individually evaluated against all scheduler block specific fill level counter (upstream and downstream) of the same priority class (SBOCCLP). The threshold range is (0..4095) with a granularity of 16 cells. The CPU programs the threshold with a granularity of 4 cells by right shifting the value by 4: DSBT2LP(11:4) := ( threshold_value >> 4) Register 33 DSBT3 Upstream/Downstream DBA Scheduler Block Threshold Register 3 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DSBT3 Typical Usage: Written and Read by CPU during initialization Bit 15 14 38H 13 12 11 10 9 8 2 1 0 DSBT3HP(11:4) Bit 7 6 5 4 3 DSBT3LP(11:4) Preliminary Data Sheet 192 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY DSBT3HP(11:4) DBA Scheduler Block Threshold 3 High Priority This bit field represents the most significant 8-bits of the internal 12 bit wide High Priority DBA Threshold 3. The threshold value is global, but individually evaluated against all scheduler block specific fill level counter (upstream and downstream) of the same priority class (SBOCCHP). The threshold range is (0..4095) with a granularity of 16 cells. The CPU programs the threshold with a granularity of 4 cells by right shifting the value by 4: DSBT3HP(11:4) := ( threshold_value >> 4) DSBT3LP(11:4) DBA Scheduler Block Threshold 3 Low Priority This bit field represents the most significant 8-bits of the internal 12 bit wide Low Priority DBA Threshold 3. The threshold value is global, but individually evaluated against all scheduler block specific fill level counter (upstream and downstream) of the same priority class (SBOCCLP). The threshold range is (0..4095) with a granularity of 16 cells. The CPU programs the threshold with a granularity of 4 cells by right shifting the value by 4: DSBT3LP(11:4) := ( threshold_value >> 4) Preliminary Data Sheet 193 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 34 DSBT4 Upstream/Downstream DBA Scheduler Block Threshold Register 4 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DSBT4 Typical Usage: Written and Read by CPU during initialization Bit 15 14 39H 13 12 11 10 9 8 2 1 0 DSBT4HP(11:4) Bit 7 6 5 4 3 DSBT4LP(11:4) DSBT4HP(11:4) DBA Scheduler Block Threshold 4 High Priority This bit field represents the most significant 8-bits of the internal 12 bit wide High Priority DBA Threshold 4. The threshold value is global, but individually evaluated against all scheduler block specific fill level counter (upstream and downstream) of the same priority class (SBOCCHP). The threshold range is (0..4095) with a granularity of 16 cells. The CPU programs the threshold with a granularity of 4 cells by right shifting the value by 4: DSBT4HP(11:4) := ( threshold_value >> 4) DSBT4LP(11:4) DBA Scheduler Block Threshold 4 Low Priority Preliminary Data Sheet 194 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY This bit field represents the most significant 8-bits of the internal 12 bit wide Low Priority DBA Threshold 4. The threshold value is global, but individually evaluated against all scheduler block specific fill level counter (upstream and downstream) of the same priority class (SBOCCLP). The threshold range is (0..4095) with a granularity of 16 cells. The CPU programs the threshold with a granularity of 4 cells by right shifting the value by 4: DSBT4LP(11:4) := ( threshold_value >> 4) Preliminary Data Sheet 195 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 1: DBA Threshold Crossing Table Transfer Register The DBA Threshold Crossing Table (DTCT) Transfer Register is used to access the internal Upstream/Downstream DBA Threshold Crossing Table containing 2*8 entries of 16 bit each. Table 7-4 summarize the registers. Table 7-4 Registers DTC Upstream/Downstream Table Access 15 0 DTCT RAM Entry 15 RAM Select: 0 15 0 DTCT MAR=05H Entry Select: 15 no Mask; read access only 0 WAR (0..7D) DTCT is the transfer register (read only) for a 16-bit DTC Table entry. The Read process is controlled by the MAR (Memory Address Register). The 5 LSBs (= Bit 4..0) of the MAR register select the memory/table that will be accessed; to select the DTC Table, bit field MAR(4:0) must be set to 05H. Bit 5 of MAR starts the transfer and is automatically cleared after execution of the Read-Modify-Write process. Table 7-5 Bit 15 WAR Register Mapping for DTC Table access 14 13 12 11 10 9 8 2 1 0 Unused(11:4) Bit 7 6 5 4 3 unused(3:0) Preliminary Data Sheet Core 196 EntrySel(3:0) 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Core Selects the core (upstream/downstream) for access of the DBA Threshold Crossing Indication entries: EntrySel(3:0) 0 Upstream Core 1 Downstream Core Selects one of the 8 DBA Threshold Crossing Indication Entries. Register 35 DTCT DTC Transfer Register CPU Accessibility: Read Reset Value: 0000H Offset Address: DTCT Typical Usage: Read by CPU Bit 15 14 3AH 13 12 11 10 9 8 2 1 0 DTCSBE(15:8) Bit 7 6 5 4 3 DTCSBE(7:0) DTCSBE(15:0) DBA Threshold Crossing Scheduler Block Event Each bit indicates that a DBA Threshold Crossing Event has occured in a specific Scheduler Block (SB). The Threshold Crossing type must then be read from the respective SOT table entry (see Register 50: SOT0). The Scheduler Block j is determined from the bit-position N in bitfield DTCSBE(15:8) and the Entry number (Register WAR bit-field 'EntrySel(3:0)' and bit 'Core'): Core='0' Upstream Events: jSBUp := EntrySel(3:0) * 16 + N Core='1' Downstream Events: jSBDn := EntrySel(3:0) * 16 + N Preliminary Data Sheet 197 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Note: The DTCSBE(15:0) entries are automatically cleared on read. Any new event (bit set by ABMP) generates an interrupt in register ISRDBA (see Register 116: ISRDBA). Preliminary Data Sheet 198 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 2: LCI Table Transfer Registers LCIC, LCI1, LCI2 These registers are used to access the internal Local Connection Identifier (LCI) table containing 8191 entries (one entry serves for upstream and downstream direction). Table 7-6 shows an overview of the registers involved. Table 7-6 Registers for LCI Table Access 47 0 LCI RAM entry 15 0 15 LCI2 0 RAM select: 15 LCI1 0 15 LCIC 0 MAR=00H LCI select: 15 0 15 MASK2 0 15 MASK1 0 15 MASK0 0 WAR (0..16383D) LCIC, LCI1 and LCI2 are the transfer registers for one 48-bit LCI table entry. The LCI value representing the table entry which needs to be Read or modified must be written to the Word Address Register (WAR). The dedicated LCI table entry is Read into the LCIC/LCI1/LCI2 Registers or modified by the LCIC/LCI1/LCI2 Register values with a Read-Modify-Write mechanism. The associated Mask Registers MASK0 to MASK2 allow a bit-by-bit selection between Read (1) and Write (0) operation. In case of Read operation, the dedicated LCIC/LCI1/LCI2 register bit will be overwritten by the respective LCI table entry bit value. In case of Write operation, the dedicated LCIC/LCI1/LCI2 register bit will modify the respective LCI table entry bit value. The Read-Modify-Write process is controlled by the Memory Address Register (MAR). The 5 LSBs (= Bit 4..0) of the MAR select the memory/table that will be accessed; to select the LCI table bit field MAR(4:0) must be set to 0. Bit 5 of the MAR starts the transfer and is automatically cleared after execution of the Read-Modify-Write process. Table 7-7 Bit 15 WAR Register Mapping for LCI Table Access 14 13 12 Unused(2:0) Bit 7 6 11 10 9 8 1 0 LCISel(13:8) 5 4 3 2 LCISel(7:0) * LCISel(13:0) Selects an LCI entry within the range (0..8191). Preliminary Data Sheet 199 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 36 LCI0 LCI Transfer Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: LCI0 Typical Usage: Written and Read by CPU to maintain the LCI table Bit 15 14 3BH 13 12 11 10 9 8 2 1 0 CLPT ABM core Unused(13:6) Bit 7 6 5 4 3 Unused(5:0) CLPT ABMcore CLP Transparent: Specifies whether the CLP bit of cells belonging to this connection is evaluated or not in threshold checks. Valid for both upstream and downstream cores. 0 CLP bit is evaluated. 1 CLP bit is not evaluated; all cells are treated as high priority cells assuming CLP=0. ABM Core Selection: This bit is valid in Uni-directional Mode only and specifies the core responsible for cells of this LCI. 0 Schedulers 0..127 are selected (core 0). 1 Schedulers 128..255 are selected (core 1). Preliminary Data Sheet 200 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 37 LCI1 LCI Transfer Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: LCI1 Typical Usage: Written and Read by CPU to maintain the LCI table Bit 15 14 3CH 13 12 11 10 9 8 2 1 0 DnQID(12:5) Bit 7 6 5 4 DnQID(4:0) 3 flags(2:0) DnQID(12:0) Downstream Queue Identifier. Specifies the queue (0..8191) in which the cells of the connection are stored. flag 2 Last cell of packet flag for downstream direction; This bit is autonomously used by the EPD function of the ABM. Initialize to 1 at connection setup. Do not Write during normal operation. flag 1 Discard packet flag in downstream direction; This bit is autonomously used by the EPD function of the ABM. Initialize to 0 at connection setup. Do not Write during normal operation. flag 0 Discard rest of packet flag in downstream direction; This bit is autonomously used by the EPD function of the ABM. Initialize to 0 at connection setup. Do not Write during normal operation. Preliminary Data Sheet 201 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 38 LCI2 LCI Transfer Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: LCI1 Typical Usage: Written and Read by CPU to maintain the LCI table Bit 15 14 3DH 13 12 11 10 9 8 2 1 0 UpQID(12:5) Bit 7 6 5 4 3 UpQID(4:0) flags(2:0) UpQID(12:0) Upstream Queue Identifier. Specifies the queue (0..8191) in which the cells of the connection are stored. flag 2 Last cell of packet flag for upstream direction; This bit is autonomously used by the EPD function of the ABM. Initialize to 1 at connection setup. Do not Write during normal operation. flag 1 Discard packet flag in upstream direction; This bit is autonomously used by the EPD function of the ABM. Initialize to 0 at connection setup. Do not Write during normal operation. flag 0 Discard rest of packet flag in upstream direction; This bit is autonomously used by the EPD function of the ABM. Initialize to 0 at connection setup. Do not Write during normal operation. Preliminary Data Sheet 202 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 3: Traffic Class Table Transfer Registers TCT0, TCT1, TCT2, TCT3 The Traffic Class Table Transfer Registers are used to access the internal Traffic Class Table (TCT) containing 2*16 entries of 4*64 bits each (16 traffic classes per ABM core, 4 words of 64 bit per entry). Table 7-8 shows an overview of the registers involved. Table 7-8 Registers for TCT Table Access 63 0 TCT RAM entry 15 0 15 TCT3 RAM select: 0 15 TCT2 0 15 TCT1 0 15 TCT0 0 MAR=01H TCT entry select: 15 0 15 MASK3 0 15 MASK2 0 15 MASK1 0 15 MASK0 0 WAR (0..127D) TCT0, TCT1, TCT2 and TCT3 are the transfer registers used to access the 4*64 bit TCT table entries. Core selection, traffic class number, and 64-bit word selection of the table entry which needs to be Read or Modified must be programmed to the Word Address Register (WAR). The dedicated TCT table entry 64-bit word is Read into the TCT3/TCT2/TCT1/ TCT0 registers or Modified by the TCT3/TCT2/TCT1/TCT0 register values with a ReadModify-Write mechanism. The associated Mask Registers MASKi (i=3..0) allow a bit-bybit selection between Read (1) and Write (0) operations. In case of Read operation, the dedicated TCTi (i=3..0) register bit will be overwritten by the respective TCT table entry bit value. In case of Write operation, the dedicated TCTi (i=3..0) register bit will modify the respective TCT table entry bit value. The Read-Modify-Write process is controlled by the Memory Address Register (MAR). The 5 LSBs (= Bit 4..0) of the MAR select the memory/table that will be accessed; to select the TCT table bit field MAR(4:0) must be set to 1. Bit 5 of MAR starts the transfer and is automatically cleared after execution of the Read-Modify-Write process. Table 7-9 Bit 15 WAR Register Mapping for TCT Table Access 14 13 12 11 10 9 8 2 1 0 Unused(7:0) Bit 7 6 Unused CoreSel Preliminary Data Sheet 5 4 3 TrafClass(3:0) 203 word64Sel(1:0) 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY CoreSel Selects the ABM core for TCT table access: 0 Upstream core selected (core 0) 1 Downstream core selected (core 1) TrafClass(3:0) Selects The Traffic Class for the TCT table access in the range (0..15). word64Sel(1:0) Selects The 64-Bit Word of the 256-bit TCT table entry for access: 00 Bit field (63..0) of traffic class entry is selected. 01 Bit field (127..64) of traffic class entry is selected. 10 Bit field (191..128) of traffic class entry is selected. 11 Bit field (256..192) of traffic class entry is selected. WAR modulo 4 The meaning of registers TCTi (i=3..0) depends on the word selection bit field 'word64Sel(1:0)' in the WAR, because 256-bit TCT entries are mapped to 64 bits of registers TCTi (i=3..0) by this selection: 63 56 55 48 47 40 3 DiscardedCells(31:0)1) 2 Accepted/Transmitted Packets(31:0)1) 1 TrafClassMax(7:0) 0 1) SbMax(7:0) unused(3:0) 39 32 SbCiCLP1(11:0) DH 2827262524232221 unused(4:0) (3:0) unused(15:0) TCT3(15:0) TCT2(15:0) All 5 statistical counters stop at their maximum value. Automatic reset is performed after Read access, i.e. it is not necessary to initialize them to 0. Preliminary Data Sheet 204 2001-14-01 Prel. ABMP Data Sheet Register Description WAR modulo 4 PRELIMINARY 3 2 31 24 unused(7:0) 23 16 LostCells LostCells TrafClass Scheduler (3:0)1) (3:0)1) unused(13:0) 8 7 0 DiscardedPackets/CLP1Cells(15:0)1) TrafClassOccNg(17:0) 1 unused(7:0) QueueMax(7:0) 0 unused(7:0) BufCiCLP1(7:0) TCT1(15:0) 1) 15 unused(3:0) QueueCiCLP1(11:0) BufMax(7:0) BufEPD(7:0) TCT0(15:0) All 5 statistical counters stop at their maximum value. Automatic reset is performed after Read access, i.e. it is not necessary to initialize them to 0. Note: - grey fields are 'unused', it is recommended to mask them for write access - green fields must be configured (written) by the CPU - blue fields are statistic counter values optionally read by CPU Preliminary Data Sheet 205 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 39 TCT0 TCT Transfer Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: TCT0 Typical Usage: Written and Read by CPU to maintain the TCT table; the meaning of register TCT0 depends on the bit-field 'Word64Sel' in WAR; 3EH Register WAR.Word64Sel(1:0) = '00': Bit 15 14 13 12 11 10 9 8 2 1 0 BufMax(7:0) Bit 7 6 5 4 3 BufEPD(7:0) BufMax(7:0) Maximum Buffer Fill Threshold for a non-real-time traffic class configuration (register TCT1, DwordSel=00). The first cell exceeding this threshold is discarded and if also PPD is enabled for this traffic class (register TCT1, DwordSel=00, PPDen=1) PPD is applied on a per connection (LCI) basis. The threshold is defined with a granularity of 1024 cells: Threshold = BufNrtMax(7:0) * 1024 Cells BufEPD(7:0) EPD threshold for a non-real-time traffic class configuration (register TCT1, DwordSel='00'). If the buffer fill exceeds this threshold and EPD is enabled for this traffic class (register TCT1, DwordSel=00, EPDen=1) EPD is applied on a per connection (LCI) basis. The threshold is defined with a granularity of 1024 cells: Threshold = BufEPD(7:0) * 1024Cells Register WAR.Word64Sel(1:0) = '01': Preliminary Data Sheet 206 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Bit 15 14 13 12 11 unused(3:0) Bit 7 6 10 9 8 QueueCiCLP1(11:8) 5 4 3 2 1 0 QueueCiCLP1(7:0) QueueCiCLP1 (11:0) Combined Queue Threshold of this Traffic Class for the following cases: a) if ABRen=1 for the traffic class ABR Congestion Indication CI/EFCI is triggered b) if CLPT=0 (CLP transparent bit is not true) and EPDen=0 CLP1 queue threshold for CLP=1 cells (cells with CLP=1 are discarded) c) if CLPT=0 and EPDen=1 EPD GFR queue threshold. If that threshold and additionally BufNrtEPD (of the respective traffic class) is exceeded then EPD is triggered. The threshold is defined with a granularity of 4: Threshold = QueueCiCLP1(7:0) * 4 Cells * Register WAR.Word64Sel(1:0) = '10': Bit 15 14 13 12 11 10 9 8 2 1 0 TrafClassOccNg(15:8) Bit 7 6 5 4 3 TrafClassOccNg(7:0) TrafClassOccNg Current Buffer Occupation in number of cells for this traffic class. (15:0) Do not Write in normal operation. Register WAR.Word64Sel(1:0) = '11': Preliminary Data Sheet 207 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Bit 15 14 13 12 11 10 9 8 1 0 DiscardedPackets/CLP1Cells(15:8) Bit 7 6 5 4 3 2 DiscardedPackets/CLP1Cells(7:0) Discarded Packets/ CLP1Cells(15:0) Count of Lost Packets due to EPD Overflow for this traffic class or count of lost CLP=1 cells due to CLP threshold overflow. Automatically reset after Read access. Register 40 TCT1 TCT Transfer Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: TCT1 Typical Usage: Written and Read by CPU to maintain the TCT table; the meaning of register TCT1 depends on the bit-field 'Word64Sel' in WAR; 3FH Register WAR.Word64Sel(1:0) = '00': Bit 15 14 13 12 11 10 9 8 2 1 0 unused(7:0) Bit 7 6 5 4 3 BufCiCLP1(17:10) Preliminary Data Sheet 208 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY BufCiCLP1 (17:10) Buffer EPD CLP1 Threshold This 8-bit value determines a global cell filling level threshold with a granularity of 1024 cells that triggers explicit packet discard (EPD) for CLP=1 tagged frames used by GFR traffic class service (low watermark). The threshold values are compared with the per scheduler non guaranteed cell counter SBOCCNG (Scheduler Block Non Guaranteed Occupancy) (see Internal Table 5:: Scheduler Occupancy Table Transfer Registers SOT0..SOT4). The CPU programs the threshold with a granularity of 1024 cells by right shifting the value by 10: BufCiCLP1(17:10) := (threshold_value(17:0) >> 10) Note: In ABM v1.1 this threshold was determined by registers UEC and DEC. Register WAR.Word64Sel(1:0) = '01': Bit 15 14 13 12 11 10 9 8 2 1 0 unused(7:0) Bit 7 6 5 4 3 QueueMax(7:0) QueueMax (7:0) This 8-bit value determines the maximum queue length with a granularity of 64 cells. The CPU programs the maximum queue length with a granularity of 64 cells by right shifting the value by 6: QueueMax(7:0) := queuelength >> 6 The maximum length of any queue is limited to (256*64-1) = 16320 cells. Preliminary Data Sheet 209 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register WAR.Word64Sel(1:0) = '10': Bit 15 14 13 12 11 10 9 8 2 1 0 unused(7:0) Bit 7 6 5 4 3 unused(5:0) TrafClassOccNg (17:16) TrafClassOccNg MSBs of Current Buffer Occupation Counter (17:16) TrafClassOccNg(17:0) counts the number of cells stored for this traffic class. Do not Write in normal operation. * Register WAR.Word64Sel(1:0) = '11': Bit 15 14 13 12 11 10 9 8 2 1 0 unused(7:0) Bit 7 6 5 4 3 LostCellsTrafClass(3:0) LostCellsScheduler(3:0) LostCellsTraf Class(3:0) Count of Lost Cells due to Buffer Overflow for this traffic class. Automatically reset after Read access. LostCells Scheduler(3:0) Count of Lost Cells due to Scheduler Overflow for this traffic class. Automatically reset after Read access. Preliminary Data Sheet 210 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 41 TCT2 TCT Transfer Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: TCT2 Typical Usage: Not used by CPU; the meaning of register TCT2 depends on the bit-field 'Word64Sel' in WAR; 40H Register WAR.Word64Sel(1:0) = '00': Bit 15 14 13 12 11 10 9 8 2 1 0 10 9 8 unused(7:0) Bit 7 6 5 4 3 unused(7:0) * Register WAR.Word64Sel(1:0) = '01': Bit 15 14 13 12 11 unused(3:0) Bit 7 6 5 SbCiCLP1(11:8) 4 3 2 1 0 SbCiCLP1(7:0) Preliminary Data Sheet 211 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY SbCiCLP1(11:0) Scheduler Block Ci/CLP1 Threshold This threshold determines a maximum number of low priority cells allowed to be stored per scheduler block with a granularity of 64 cells. The CPU programs the threshold with a granularity of 64 cells by right shifting the value by 6: SbCiCLP1(11:0) := threshold >> 6 Register WAR.Word64Sel(1:0) = '10': Bit 15 14 13 12 11 10 9 8 1 0 Accepted/TransmittedPackets(15:8) Bit 7 6 5 4 3 2 Accepted/TransmittedPackets(7:0) Accepted/ Transmitted Packets(15:0) Count of Accepted AAL5 Units within this traffic class. This counter is incremented when a user data cell with AAL_ indication=1 is accepted (Packet end indication in AAL5: PTI= xx1). Do not Write in normal operation. Automatically reset after Read access. * Register WAR.Word64Sel(1:0) = '11': Bit 15 14 13 12 11 10 9 8 1 0 Accepted/TransmittedPackets(15:8) Bit 7 6 5 4 3 2 Accepted/TransmittedPackets(7:0) Preliminary Data Sheet 212 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY DiscardedCells (31:16) Count of all discarded cells for this traffic class. Do not Write in normal operation. Automatically reset after Read access. Register 42 TCT3 TCT Transfer Register 3 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: TCT3 Typical Usage: Written and Read by CPU to maintain the TCT table; the meaning of register TCT3 depends on the bit-field 'Word64Sel' in WAR; 41H Register WAR.Word64Sel(1:0) = '00': Bit 15 14 13 DH(2:0) Bit 7 6 5 CntLP DBA GFRen CLPtrans DBA Preliminary Data Sheet 12 11 10 9 8 ABRen ABRVp EPDen PPDen SCNT 4 3 2 1 0 unused(4:0) 213 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY DH(2:0) DeltaHysteresis for threshold evaluations with hysteresis applied: This value is per traffic class, but is evaluated individually for each effected threshold relative to the threshold size. The hysteresis determines a lower threshold THhys with THhysi := Thresholdi - Deltai The Deltai value is determined by bit-field DH(2:0) and Thresholdi with: Deltai := Thresholdi >> [DH(2:0) +1] The following table shows the operation and resulting THhysi values for the example of a threshold programmed to 256 cells: ABRen DH(2:0): Deltai:= Example: 0d 0 1d Thresholdi >>2 THhysi := 192 2d Thresholdi >>3 THhysi := 224 3d Thresholdi >>4 THhysi := 240 4d Thresholdi >>5 THhysi := 248 5d Thresholdi >>6 THhysi := 252 6d Thresholdi >>7 THhysi := 254 7d Thresholdi >>8 (hysteresis ineffective) THhysi := 256 (hysteresis disabled) THhysi := 256 Congestion indication This bit enables congestion indication marking in user cells (EFCI marking) within every ABR connection (LCI) that belongs to this traffic class: 0 Congestion indication disabled. 1 Congestion indication enabled. Note: This ABR function is a queue manager function and not related to the Enhaced Rate Control (ERC) unit. ABRvp Indication for update of RM cells (ABR service category) relating to the VP or to the individual VC, respectively: 0 Preliminary Data Sheet Congestion is indicated via VC RM cells (F5 flow). VC RM cells are identified with PTI=110 and VCI <> 6. 214 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY 1 Congestion is indicated via VP RM cells (F4 flow). VP RM cells are identified with VCI=6 (regardless of the value of the PTI field) Note: According to the standards, VP RM cells MUST have VCI=6 and PTI=110. If cells with PTI=110 and VCI <> 6 are contained in the cell stream they are ignored. This is the correct behavior for an ABR VC within an ABR VP. EPDen PPDen SCNT CntLPDBA EPD for the individual traffic class. EPD is used for every connection (LCI) within that traffic class: 0 EPD is disabled. 1 EPD is enabled. PPD for the individual traffic class. PPD is used for every connection (LCI) within that traffic class: 0 PPD is disabled 1 PPD is enabled Counter Function Select This bit selects the function of counter 'Accepted Packets/ Cells(31:0)': 0 Accepted Packets are counted 1 Accepted Cells are counted Count all Low Priority (DBA): This bit enforces that all cells of that traffic class are counted as low priority cells for DBA threshold counters, regardless of the CLP bit value. 0 CLP bit is evaluated and determines whether the cell is counted by the High Priority (HP) or Low Priority (LP) counters. 1 CLP bit is not evaluated; all cells are treated as low priority and are counted by the Low Priority counter (LP). Preliminary Data Sheet 215 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY GFRen GFR Enable: This bit enables a modified EPD threshold evaluation for GFR traffic. 0 1 CLPtransDBA CLP Transparent (DBA): Specifies whether the CLP bit of cells belonging to this connection is evaluated or not for DBA threshold checks and counters. 0 CLP bit is evaluated. 1 CLP bit is not evaluated; all cells are treated as high priority cells assuming CLP=0. Register WAR.Word64Sel(1:0) = '01': Bit 15 14 13 12 11 10 9 8 2 1 0 TrafClassMax(7:0) Bit 7 6 5 4 3 SbMax(7:0) TrafClassMax (7:0) Maximum Traffic Class Fill Threshold (determines the maximum number of cells in all queues associated with this traffic class). The threshold is defined with a granularity of 1024: Threshold = TrafClassMax(7:0) * 1024 Cells Preliminary Data Sheet 216 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY SbMax(7:0) Combined Threshold of the Maximum Number of Buffered Cells in the Scheduler; that is, all cells which are in the traffic classes (= cells in the corresponding queues) of the Scheduler for the following cases: a) If EPDen=0 and ABRen=0 Maximum Scheduler fill threshold for CLP='0/1' cells b) If EPDen=1 and ABRen=0 EPD Scheduler threshold c) If ABRen=1 CI Scheduler threshold for ABR connections (Set CI-Bit (Congestion Indication) in the RM cells) The threshold is defined with a granularity of 256: Threshold = SbMaxEpdCi(7:0) * 256 Cells Register WAR.Word64Sel(1:0) = '10': Bit 15 14 13 12 11 10 9 8 1 0 Accepted/TransmittedPackets(31:24) Bit 7 6 5 4 3 2 Accepted/TransmittedPackets(23:16) Accepted/ Transmitted Packets(31:16) Count of Accepted AAL5 Units within this traffic class. This counter is incremented when a user data cell with AAL_ indication=1 is accepted (Packet end indication in AAL5: PTI= xx1). Do not Write in normal operation. Automatically reset after Read access. * Register WAR.Word64Sel(1:0) = '11': Preliminary Data Sheet 217 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Bit 15 14 13 12 11 10 9 8 2 1 0 DiscardedCells(31:24) Bit 7 6 5 4 3 DiscardedCells(23:16) DiscardedCells (31:16) Count of all discarded cells for this traffic class. Do not Write in normal operation. Automatically reset after Read access. Preliminary Data Sheet 218 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 4: Queue Configuration Table Transfer Registers QCT0..6 Queue Configuration Table Transfer Registers are used to access the internal Queue Configuration Table (QCT) containing 2*8192 entries. The lower 8K entries control the upstream core queues and the upper 8K entries control the downstream core queues. Table 7-10 shows an overview of the registers involved. Table 7-10 Registers for Queue Configuration Table Access 111 0 QCT RAM entry 15 0 15 QCT6 0 15 QCT5 0 15 QCT4 0 15 QCT3 RAM select: 0 15 QCT2 0 15 QCT1 0 QCT0 15 0 MAR=02H Queue select: 15 0 15 MASK6 =FFFFH 0 15 MASK5 =FFFFH 0 15 MASK4 =FFFFH 0 15 MASK3 =FFFFH 0 15 MASK2 0 15 MASK1 0 MASK0 =FFFFH 15 0 WAR (0..16383D ) QCT0...QCT6 are the transfer registers for one 112 bit QCT table entry. The core selection and queue number representing the table entry which needs to be Read or modified must be written to the Word Address Register (WAR). The dedicated QCT table entry is Read into the QCT0..QCT6 registers or modified by the QCT0..QCT6 register values with a Read-Modify-Write mechanism. The associated Mask Registers MASK0..MASK6 allow a bit-by-bit selection between Read (1) and Write (0) operation. In case of Read operation, the dedicated QCT0..QCT6 register bit will be overwritten by the respective QCT table entry bit value. In case of Write operation, the dedicated QCT0..QCT6 register bit will modify the respective QCT table entry bit value. Note: It is recommended not to Write to bit fields (111:64) and (15:0) of the QCT table entries; i.e. registers MASK0, MASK6, MASK5, MASK4 and MASK3 should always be programmed with FFFFH. The 13 LSBs (= Bit 12..0) of the WAR register select the queue-specific entry that will be accessed and bit 'CoreSel' the ABM core. The Read-Modify-Write process is controlled by the Memory Address Register (MAR). The 5 LSBs (= Bit 4..0) of the MAR select the memory/table that will be accessed; to select the QCT table, bit field MAR(4:0) must be set to 2. Bit 5 of MAR starts the transfer and is automatically cleared after execution of the Read-Modify-Write process. Preliminary Data Sheet 219 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-11 Bit WAR Register Mapping for LCI Table Access 15 14 unused(1:0) Bit 7 13 12 11 CoreSel 6 10 9 8 1 0 9 8 1 0 QSel(12:8) 5 4 3 2 QSel(7:0) CoreSel Selects an ABM Core: QSel(12:0) 0 Upstream core selected 1 Downstream core selected Selects a Queue Entry within the range (0..8191). Register 43 QCT0 Queue Configuration Transfer Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: QCT0 Typical Usage: Read by CPU Bit 15 14 42H 13 12 Unused(1:0) Bit 7 11 10 QueueLength(13:8) 6 5 4 3 2 QueueLength(7:0) QueueLength (13:0) Represents the Current Number of Cells Stored in this Queue. Do not Write in normal operation. Preliminary Data Sheet 220 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 44 QCT1 Queue Configuration Transfer Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: QCT1 Typical Usage: Written and Read by CPU to maintain the LCI table Bit Bit 43H 15 14 13 12 DQac RSall VS/VD en ABR dir 7 6 5 4 10 9 8 TrafClass(3:0) 3 QIDvalid DQac 11 2 1 0 SID(6:0) Dummy Queue Action This bit is a command bit that must always be set when a dummy queue is activated or deactivated. Note: Read access to this command bit will always return '0'. RSall ReSchedule Always This bit determines the queue scheduling process: '0' The queue is only scheduled/re-scheduled with its specific rate while the queue is not empty (normal operation). Note: 'RSall' can be reset anytime while the queue is enabled. In response to resetting 'RSall' the ABMP will generate an interrupt (Bit 'DDQACC' in...) and reset bit 'MGConf/DQsch' in this table. Preliminary Data Sheet 221 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY '1' The queue is always scheduled/re-scheduled with its specifc rate independent of the queue filling level. Scheduling an empty queue results in an 'empty cell cycle' (no cell is emitted during this cycle). A so called 'dummy queue' is used either for generating empty cell cycles or by the ERC unit for generating outof-rate RM cells. Note: 'RSall' can be set with connection setup (together with QIDvalid='1') or anytime while the queue is enabled. Note: The 'RSall' information is internally conveyed to the scheduler. This process is acknowledged by setting bit 'DQac' and an interrupt (Bit 'DDQACC' in...). It is recommended not to select any other table or table entry while waiting for this acknowledge. Note: After setting bit 'RSall', the ABMP will automatically set bit 'MGConf/DQsch' to acknowledge the first dummy schedule event. Note: To activate or deactivate a dummy queue, command bit 'DQac' must be set in conjuntion with setting or resetting bit 'RSall'. VS/VDen VS/VD Enable This bit enables ABR VS/VD operation for the queue (in conjunction with appropriate settings of the ERC unit): '0' The queue is not configured for ABR VS/VD operation. '1' The queue is configured for ABR VS/VD operation in conjunction with proper settings of the ERC unit. This bit enables control information exchange between the Queue Manager and the ERC unit as well as enables ABR OAM cell handling. Preliminary Data Sheet 222 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY QIDvalid Queue Enable: 0 Queue disabled. An attempt to store a cell to a disabled queue leads to discard of the cell and a QIDINV interrupt is generated. If a filled queue gets disabled, cells may still be in the queue. In this case the disabled queue is still scheduled, and cells are logically emitted from the queue but will not be transmitted. Actual filling of the queue can be obtained via QueueLength(13:0) parameter in the QCT entry. Note: If the queue was part of a VC-merge group, deactivating the queue by setting QIDvalid='0' automatically starts an internal process to delete the queue from the VC-merge group. This process is acknowledged by status bit 'DQacc'. It is recommended not to disable any further queue while waiting for this acknowledge. 1 Queue enabled. Cells are allowed to enter the queue. TrafClass(3:0) Traffic Class Number (0..15) Assigns the queue to one of the 16 traffic classes defined in the traffic class table TCT for this core. SID(6:0) Scheduler Number (0..127) Assigns the queue to one of the 128 schedulers of this core. ABRdir ABR CI/NI update of backward RM cells: 0 RM cells of the same core are updated. 1 RM cells of the opposite core are updated. Note: ABR Congestion Indication is done in RM cells of the backward ABR connection. In Bi-directional Mode, these cells are handled by the opposite core (therefore ABRdir must be 1 for each ABR QID). In Mini-switch Mode, these cells can be handled from the same or opposite core depending on configuration. (If only one core will be used ,ABRdir must be 0 for each ABR QID.) * Preliminary Data Sheet 223 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 45 QCT2 Queue Configuration Transfer Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: QCT2 Typical Usage: Written by CPU to configure VC-Merge operation Bit 15 14 44H 13 12 MGconf/ DQsch Bit 7 11 10 9 8 2 1 0 MGID(6:0) 6 5 4 3 MinBG(7:0) Preliminary Data Sheet 224 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY MGconf/ DQsch Merge Group Configured/ Dummy Queue Scheduled The meaning of this flag depends on bit 'RSall': RSall='0' The queue is not configured as a 'dummy queue' and may be configured as a VC-merge group member: MGconf 0 The queue is neither a dummy queue, nor member of a VC-merge group. 1 The queue is member of a VC-merge group. The VCmerge group is determined by bit-field 'MGID(6:0). Note: To disable an active VC-merge group, bit 'QIDvalid' must be reset. Deactivating the queue by setting QIDvalid='0' automatically starts an internal process to delete the queue from the VCmerge group. In response to resetting 'QIDvalid' the ABMP will generate an interrupt (Bit 'DMQACC' in...) and reset bit 'MGConf/DQsch' in this table. RSall='1' The queue is configured as a 'dummy queue': DQsch 0 The queue is activated as a 'dummy queue', but no first dummy schedule event has occured. 1 The queue is activated as a 'dummy queue' and at least one first dummy schedule event has occured. Note: 'RSall' can be reset anytime while the queue is enabled. In response to resetting 'RSall' the ABMP will generate an interrupt (Bit 'DDQACC' in...) and reset bit 'MGConf/DQsch' in this table. MGID(6:0) Merge Group Number (0..127) Assigns the queue to one of 128 merge groups of this core. Preliminary Data Sheet 225 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY MinBG(7:0) Minimum Buffer Guarantee This bit-field determines a minimum buffer reservation for this particular queue. The sum of all minimum buffer reservations virtually devides the total buffer into a 'guaranteed' part and a shared 'Non-Guaranteed' part. The minimum buffer reservation offers to granularities depending on MSB bit MinBG(7): MinBG(7) Granularity of 1 cell for short queues (e.g. real-time := 0 queues): The minimum reserved buffer in number of cells is reserved_buffer = MinBG(6:0) = {0,1,2,..127} MinBG(7) Granularity of 8 cells for long queues (e.g. non-real-time := 1 queues): The minimum reserved buffer in number of cells is reserved_buffer = MinBG(6:0) << 3 = {0,8,16,..1016} Register 46 QCT3 Queue Configuration Transfer Register 3 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: QCT3 Typical Usage: Not used by CPU Bit 15 14 45H 13 12 11 10 9 8 3 2 1 0 EOP CI NI EFCI unused(11:4) Bit 7 6 5 4 unused(3:0) EOP EOP-Flag: Do not Write during normal operation. CI CI-Flag: Preliminary Data Sheet 226 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Whenever a cell is accepted the respective queue threshold values are checked. In case a CI condition is detected, this condition is stored in flag2 for further recognition by resource monitoring operation (ABR). It is recommended to set this bit to 0 during queue setup. Do not Write during normal operation. NI NI-Flag: Whenever a cell is accepted the respective queue threshold values are checked. In case a NI condition is detected, this condition is stored in flag1 for further recognition by resource monitoring operation (ABR). It is recommended to set this bit to 0 during queue setup. Do not Write during normal operation. EFCI EFCI-Flag: Whenever a cell is accepted the respective queue threshold values are checked. In case a EFCI condition is detected, this condition is stored in flag0 for further recognition by resource monitoring operation (ABR). It is recommended to set this bit to 0 during queue setup. Do not Write during normal operation. Preliminary Data Sheet 227 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 47 QCT4 Queue Configuration Transfer Register 4 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: QCT4 Typical Usage: Not used by CPU Bit 15 14 46H 13 12 11 10 9 8 2 1 0 10 9 8 2 1 0 Reserved(15:8) Bit 7 6 5 4 3 Reserved(15:8) reserved(15:0) Do not Write in normal operation. Register 48 QCT5 Queue Configuration Transfer Register 5 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: QCT5 Typical Usage: Not used by CPU Bit 15 14 47H 13 12 11 Reserved(15:8) Bit 7 6 5 4 3 Reserved(15:8) Preliminary Data Sheet 228 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY reserved(15:0) Do not Write in normal operation. Register 49 QCT6 Queue Configuration Transfer Register 6 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: QCT6 Typical Usage: Not used by CPU Bit 15 14 48H 13 12 11 10 9 8 2 1 0 Reserved(15:8) Bit 7 6 5 4 3 Reserved(15:8) reserved(15:0) Do not Write in normal operation. Preliminary Data Sheet 229 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 5: Scheduler Occupancy Table Transfer Registers SOT0..SOT4 The Scheduler Occupancy Table Transfer Registers are used to access the internal Scheduler Occupancy Table (SOT) containing 2*128 entries of 80 bit each. Table 7-12 shows an overview of the registers involved. Note: The SOT table information is typically not required by the CPU. The SOT maintains global counters that are internally used for threshold evaluation. In case of DBA operation, the SOT0 transfer register provides information about threshold crossing events that are evaluated by CPU for the DBA algorithm. For statistical purposes, reading the SOT entries provides a snap shot of the respective scheduler occupation situation distinguished by priorities and also the current number of discarded low priority cells. Table 7-12 Registers for SOT Table Access 79 0 SOT RAM entry 15 0 15 SOT4 0 15 SOT3 RAM Select: 0 15 SOT2 0 15 SOT1 0 15 SOT0 0 MAR=03H Entry select: 15 MASK4 0 15 MASK3 0 15 MASK2 0 15 MASK1 0 15 MASK0 0 15 0 WAR (0..255D) SOT0..SOT4 are the transfer registers for one 80-bit SOT table entry. The Scheduler number representing the table entry which needs to be Read or modified must be written to the Word Address Register (WAR). The dedicated SOT table entry is Read into the SOT0..SOT4 Registers or modified by the SOT0..SOT4 register values with a ReadModify-Write mechanism. The associated Mask Registers MASK0..MASK4 allow a bitby-bit selection between Read (1) and Write (0) operation. In case of Read operation, the dedicated SOT0..SOT4 register bit will be overwritten by the respective SOT table entry bit value. In case of Write operation, the dedicated SOT0..SOT4 register bit will modify the respective SOT table entry bit value. The Read-Modify-Write process is controlled by the Memory Address Register (MAR). The 5 LSBs (= Bit 4..0) of the MAR register select the memory/table that will be accessed; to select the SOT table, bit field MAR(4:0) must be set to 3. Bit 5 of MAR starts the transfer and is automatically cleared after execution of the Read-Modify-Write process. Preliminary Data Sheet 230 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-13 Bit WAR Register Mapping for SOT Table Access 15 14 13 12 11 10 9 8 2 1 0 9 8 Unused(7:0) Bit 7 6 5 4 CoreSel CoreSel 3 SchedSel(6:0) Selects an ABM core: SchedSel(6:0) 0 Upstream core selected 1 Downstream core selected Selects one of the 128 core-specific Schedulers. Register 50 SOT0 SOT Transfer Register 0 CPU Accessibility: Read only Reset Value: 0000H Offset Address: SOT0 Typical Usage: Read by CPU Bit 15 14 SBOCCNG(1:0) Bit 7 6 49H 13 12 SBOCCHP(1:0) 5 4 11 10 SBOCCLP(1:0) 3 2 SBOCCLPd(1:0) 1 0 DBATHCROSS(7:0) DBATHCROSS (7:0) DBA Threshold Crossing Indication Preliminary Data Sheet 231 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 51 SOT1 SOT Transfer Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: SOT1 Typical Usage: Read by CPU (for debug purposes or statistics) Bit 15 14 4AH 13 12 11 10 9 8 2 1 0 SBOCCLPd(17:10) Bit 7 6 5 4 3 SBOCCLPd(9:2) SBOCCLPd (17:2) Scheduler Block Occupancy Counter Low Priority Discarded Cells Note: The LSBs SBOCCLPd(1:0) are mapped to transfer register SOT0. Register 52 SOT2 SOT Transfer Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: SOT1 Typical Usage: Read by CPU (for debug purposes or statistics) Bit 15 14 4BH 13 12 11 10 9 8 2 1 0 SBOCCLP(17:10) Bit 7 6 5 4 3 SBOCCLP(9:2) Preliminary Data Sheet 232 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY SBOCCLP(17:2) Scheduler Block Occupancy Counter Low Priority Note: The LSBs SBOCCLP(1:0) are mapped to transfer register SOT0. Register 53 SOT3 SOT Transfer Register 3 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: SOT3 Typical Usage: Read by CPU (for debug purposes or statistics) Bit 15 14 4CH 13 12 11 10 9 8 2 1 0 SBOCCHP(17:10) Bit 7 6 5 4 3 SBOCCHP(9:2) SBOCCHP(17:2) Scheduler Block Occupancy Counter High Priority Note: The LSBs SBOCCHP(1:0) are mapped to transfer register SOT0. Preliminary Data Sheet 233 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 54 SOT4 SOT Transfer Register 4 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: SOT4 Typical Usage: Read by CPU (for debug purposes or statistics) Bit 15 14 4DH 13 12 11 10 9 8 2 1 0 SBOCCNG(17:10) Bit 7 6 5 4 3 SBOCCNG(9:2) SBOCCNG(17:2) Scheduler Block Occupancy Counter Non Guaranteed Note: The LSBs SBOCCNG(1:0) are mapped to transfer register SOT0. Preliminary Data Sheet 234 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 6: Merge Group Table Transfer Registers MGT0..MGT2 The Merge Group Table Transfer Registers are used to access the internal Merge Group Table (MGT) containing 2*128 entries of 48 bit each. Table 7-12 shows an overview of the registers involved. Table 7-14 Registers for MGT Table Access 47 0 MGT RAM entry 15 0 15 MGT2 RAM Select: 0 15 MGT1 0 15 MGT0 0 MAR=06H Entry select: 15 0 15 MASK2 0 15 MASK1 0 MASK0 15 0 WAR (0..255D) MGT0..MGT2 are the transfer registers for one 48-bit MGT table entry. The Scheduler number representing the table entry which needs to be read or modified must be written to the Word Address Register (WAR). The dedicated MGT table entry is read into the MGT0..MGT2 Registers or modified by the MGT0..MGT2 register values with a ReadModify-Write mechanism. The associated Mask Registers MASK0..MASK2 allow a bitby-bit selection between Read (1) and Write (0) operation. In case of read operation, the dedicated MGT0..MGT2 register bit will be overwritten by the respective MGT table entry bit value. In case of Write operation, the dedicated MGT0..MGT2 register bit will modify the respective MGT table entry bit value. The Read-Modify-Write process is controlled by the Memory Address Register (MAR). The 5 LSBs (= Bit 4..0) of the MAR register select the memory/table that will be accessed; to select the MGT table, bit field MAR(4:0) must be set to 6. Bit 5 of MAR starts the transfer and is automatically cleared after execution of the Read-Modify-Write process. Preliminary Data Sheet 235 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Table 7-15 Bit WAR Register Mapping for MGT Table Access 15 14 13 12 11 10 9 8 2 1 0 10 9 8 2 1 0 Unused(7:0) Bit 7 6 5 4 CoreSel CoreSel 3 GroupSel(6:0) Selects an ABM core: GroupSel(6:0) 0 Upstream core selected 1 Downstream core selected Selects one of the 128 Merge Groups. Register 55 MGT0 MGT Transfer Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MGT0 Typical Usage: Not used by CPU Bit 15 14 4EH 13 12 11 Reserved(15:8) Bit 7 6 5 4 3 Reserved(7:0) Reserved(15:0) Preliminary Data Sheet 236 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 56 MGT1 MGT Transfer Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MGT1 Typical Usage: Not used by CPU Bit 15 14 4FH 13 12 11 10 9 8 2 1 0 9 8 1 0 Reserved(15:8) Bit 7 6 5 4 3 Reserved(7:0) Reserved(15:0) Register 57 MGT2 MGT Transfer Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MGT2 Typical Usage: Written by CPU to maintain the MGT table Bit Bit 15 14 unused LCIOen 7 6 50H 13 12 11 10 LCI(13:8) 5 4 3 2 LCI(7:0) Preliminary Data Sheet 237 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY LCIOen LCI Overwrite Enable: This bit enables the LCI overwrite function for cells/packets emitted by the VC-Merge Group. LCI(13:0) 0 Disable LCI overwrite 1 Enable LCI overwrite LCI In case LCI overwrite function is enabled, this value overwrites the original LCI of any cell emitted by this VC-Merge Group. The cell field that is overwritten depends on the selected LCI mapping mode. Register 58 MASK0/MASK1 Table Access Mask Registers 0/1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MASK0 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 55H 13 MASK1 12 11 56H 10 9 8 2 1 0 MASK(15:8) Bit 7 6 5 4 3 MASK(7:0) MASK0(15:0) Mask Register 0 MASK1(15:0) Mask Register 1 Preliminary Data Sheet 238 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Mask Registers 0..6 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers (LCI0..LCI2, TCT0..TCT3, QCT0..6, SOT0..SOT4, MGT0..MGT2): 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Register 59 MASK2/MASK3 Table Access Mask Registers 2/3 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MASK2 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 57H 13 MASK3 12 11 58H 10 9 8 2 1 0 MASK(15:8) Bit 7 6 5 4 3 MASK(7:0) Preliminary Data Sheet 239 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY MASK2(15:0) Mask Register 2 MASK3(15:0) Mask Register 3 Mask Registers 0..6 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers (LCI0..LCI2, TCT0..TCT3, QCT0..6, SOT0..SOT4, MGT0..MGT2): 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Register 60 MASK4/MASK5 Table Access Mask Registers 4/5 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MASK4 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 59H 13 MASK5 12 11 5AH 10 9 8 2 1 0 MASK(15:8) Bit 7 6 5 4 3 MASK(7:0) MASK4(15:0) Mask Register 4 MASK5(15:0) Mask Register 5 Preliminary Data Sheet 240 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Mask Registers 0..6 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers (LCI0..LCI2, TCT0..TCT3, QCT0..6, SOT0..SOT4, MGT0..MGT2): 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Register 61 MASK6 Table Access Mask Registers 6 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MASK6 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 5BH 13 12 11 10 9 8 2 1 0 MASK(15:8) Bit 7 6 5 4 3 MASK(7:0) Preliminary Data Sheet 241 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY MASK6(15:0) Mask Register 6 Mask Registers 0..6 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers (LCI0..LCI2, TCT0..TCT3, QCT0..6, SOT0..SOT4, MGT0..MGT2): 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Preliminary Data Sheet 242 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 7: Queue Congestion Indication Table Transfer Register The Queue Congestion Indication Table (QCIT) Transfer Register is used to access the internal Downstream Queue Congestion Indication Table containing 8192 entries of 16 bit each. Table 7-4 summarize the registers. Table 7-16 Registers QCIT Table Access 15 0 QCIT RAM Entry 15 RAM Select: 0 15 0 QCIT MAR=08H Entry Select: 15 no Mask 0 WAR (0..8191D) QCIT is the transfer register for a 16-bit QCIT Table entry. Table access is controlled by the MAR (Memory Address Register). The 5 LSBs (= Bit 4..0) of the MAR register select the memory/table that will be accessed; to select the QCIT Table, bit field MAR(4:0) must be set to 08H. Bit 5 of MAR starts the transfer and is automatically cleared after execution of the Read-Modify-Write process. Table 7-17 Bit WAR Register Mapping for DTC Table access 15 14 13 12 11 Unused(2:0) Bit 7 6 10 9 8 1 0 EntrySel(12:8) 5 4 3 2 EntrySel(7:0) EntrySel(12:0) Selects one of the 8192 Queue Congestion Indication Table Entries. Preliminary Data Sheet 243 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 62 QCIT QCIT Transfer Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: QCIT Typical Usage: Written by CPU Bit 15 14 5CH 13 12 11 Unused(3:0) Bit 7 6 5 10 9 8 QCITH(11:8) 4 3 2 1 0 QCITH(7:0) QCITH(11:0) Queue Congestion Indication Threshold This threshold determines the number of cells stored in the dedicated queue to set the associated congestion indication bit in the bit pattern of the QCI interface. The threshold value is programmed with a granularity of 4 cells. The CPU programs the threshold with a granularity of 4 cells by right shifting the value by 2: QCITH(11:0) := threshold >> 2 Note: Reset of the congestion indication is performed with a hysteresis. The hysteresis value is common to all congestion indication thresholds, but evaluated queue threshold specific. See Register 30: DQCIC for more details. Preliminary Data Sheet 244 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 63 UCDV/DCDV Upstream/Downstream Rate Shaper CDV Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UCDV Typical Usage: Written by CPU Bit 15 14 62H 13 DCDV 12 11 82H 10 9 Unused(6:0) Bit 7 6 5 4 8 CDV Max(8) 3 2 1 0 CDVMax(7:0) CDVMax(8:0) Maximal Cell Delay Variation (without notice) This bit-field determines a maximum CDV value for peak rate limited queues that can be introduced without notice. The CDVMax is measured in multiples of 16-cell cycles. If this maximum CDV is exceeded, a CDVOV (see registers ISRU/ ISRD) interrupt is generated to indicate an unexpected CDV value. This can occur if multiple peak rate limited queues are scheduled to emit a cell in the same Scheduler time slot. No cells are discarded due to this event. Preliminary Data Sheet 245 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 64 UQPTM0/DQPTM0 Upstream/Downstream Queue Parameter Table Mask Registers 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPTM0 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 65H 13 DQPTM0 12 11 85H 10 9 8 2 1 0 xQPTM0(15:8) Bit 7 6 5 4 3 xQPTM0(7:0) UQPTM0(15:0) Upstream QPT Mask Register 0 DQPTM0(15:0) Downstream QPT Mask Register 0 UQPTM0/DQPTM0 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers (QPTHU0/QPTHU1, QPTLU0/QPTLU1): 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Preliminary Data Sheet 246 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 65 UQPTM1/DQPTM1 Upstream/Downstream Queue Parameter Table Mask Registers 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPTM1 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 66H 13 DQPTM1 12 11 86H 10 9 8 2 1 0 xQPTM1(15:8) Bit 7 6 5 4 3 xQPTM1(7:0) UQPTM1(15:0) Upstream QPT Mask Register 1 DQPTM1(15:0) Downstream QPT Mask Register 1 UQPTM1/DQPTM1 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers (QPTHU0/QPTHU1, QPTLU0/QPTLU1): 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Preliminary Data Sheet 247 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 66 UQPTM2/DQPTM2 Upstream/Downstream Queue Parameter Table Mask Registers 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPTM2 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 67H 13 DQPTM2 12 11 87H 10 9 8 2 1 0 xQPTM2(15:8) Bit 7 6 5 4 3 xQPTM2(7:0) UQPTM2(15:0) Upstream QPT Mask Register 2 DQPTM2(15:0) Downstream QPT Mask Register 2 UQPTM2/DQPTM2 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers (QPTHU0/QPTHU1, QPTLU0/QPTLU1): 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Preliminary Data Sheet 248 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 67 UQPTM3/DQPTM3 Upstream/Downstream Queue Parameter Table Mask Registers 3 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPTM3 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 68H 13 DQPTM3 12 11 86H 10 9 8 2 1 0 xQPTM3(15:8) Bit 7 6 5 4 3 xQPTM3(7:0) UQPTM3(15:0) Upstream QPT Mask Register 3 DQPTM3(15:0) Downstream QPT Mask Register 3 UQPTM3/DQPTM3 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers (QPTHU0/QPTHU1, QPTLU0/QPTLU1): 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Preliminary Data Sheet 249 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 68 UQPTM4/DQPTM4 Upstream/Downstream Queue Parameter Table Mask Registers 4 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPTM4 Typical Usage: Not used for user-accessible tables. Bit 15 14 69H 13 DQPTM4 12 11 89H 10 9 8 2 1 0 xQPTM4(15:8) Bit 7 6 5 4 3 xQPTM4(7:0) UQPTM4(15:0) Upstream QPT Mask Register 4 DQPTM4(15:0) Downstream QPT Mask Register 4 UQPTM4/DQPTM4 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers: 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Preliminary Data Sheet 250 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 69 UQPTM5/DQPTM5 Upstream/Downstream Queue Parameter Table Mask Registers 5 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPTM5 Typical Usage: Not used for user-accessible tables. Bit 15 14 6AH 13 DQPTM5 12 11 8AH 10 9 8 2 1 0 xQPTM5(15:8) Bit 7 6 5 4 3 xQPTM5(7:0) UQPTM5(15:0) Upstream QPT Mask Register 5 DQPTM5(15:0) Downstream QPT Mask Register 5 UQPTM5/DQPTM5 control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers: 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Preliminary Data Sheet 251 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 70 USCONF/DSCONF Upstream/Downstream Scheduler Configuration Registers CPU Accessibility: Read/Write Reset Value: 0004H Offset Address: USCONF Typical Usage: Written by CPU during global initialization Bit 15 14 6BH 13 DSCONF 12 11 8BH 10 9 8 2 1 0 unused(12:5) Bit 7 6 5 4 3 unused(4:0) TstepC(2:0) TstepC(2:0) Time Base for the Rate Shaper Calendar This bit-field determines a multiplication factor for the PCR rate shaper calendar clock. With default settings (after reset) the rate shaper calendar is triggered by every 16th cell cycle (1 cell cycle is 32 SYSCLKs) (as in ABM v1.1). The minimum cell rate that can be shaped is limited by the range of the cycle counter to 262144 entries: minimum cell rate := SYSCLK / 32 / 262144 To enhance shaping to desired lower or higher rates, the calendar clock (cell rate respectively) can be multiplied by an additional factor: minimum cell rate := [SYSCLK / 32 / 262144] * Factor TstepC(2:0) 0d Factor 1 1d Factor 2 2d Factor 4 3d Factor 8 4d Factor 16 (default reset value) 5d Factor 32 6d Factor 64 7d Factor 128 Preliminary Data Sheet 252 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 8: Queue Parameter Table 1 Transfer Registers Queue Parameter Table Transfer Registers are used to access the internal Upstream and Downstream Queue Parameter Table 1 (QPT1) containing 8192 entries each. In both Table 7-18 and Table 7-19 provide an overview of the registers involved. Each QPT1 entry consists of 32 bit. Note: The QPT1 table information is not used by the CPU beside during queue initialization. Table 7-18 Registers for QPT1 Upstream Table Access 31 0 QPT1 RAM entry (Upstream) 15 0 15 UQPT1T1 RAM Select: 0 15 UQPT1T0 0 MAR=10H Entry Select: 15 0 15 UQPTM1 Table 7-19 0 UQPTM0 15 0 WAR (0..8191D) Registers for QPT1 Downstream Table Access 31 0 QPT1 RAM entry (Downstream) 15 0 15 DQPT1T1 RAM Select: 0 15 DQPT1T0 0 MAR=18H Entry Select: 15 0 15 DQPTM1 0 DQPTM0 15 0 WAR (0..8191D) UQPT1T0 and UQPT1T1 are the transfer registers for the 32-bit entry of the upstream QPT1 table. DQPT1T0 and DQPT1T1 are the transfer registers for the 32-bit entry of the downstream QPT1 table. Access to high and low word are both controlled by mask registers UQPTM0/UQPTM1 and DQPTM0/DQPTM1 respectively. The Mask registers Preliminary Data Sheet 253 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY are shared for access to both tables QPT1 and QPT2 whereas the transfer registers are unique for each table. The queue number representing the table entry which needs to be Read or modified must be written to the Word Address Register (WAR). The dedicated QPT1 table entry is Read into the xQPT1T0/xQPT1T1 transfer registers (x=U,D) or modified by the xQPT1T0/xQPT1T1 transfer register values with a Read-Modify-Write mechanism. The associated mask registers xQPTM0 and xQPTM1 allow a bit-by-bit selection between Read (1) and Write (0) operation. In case of Read operation, the dedicated xQPT1T0/ xQPT1T1 register bit will be overwritten by the respective QPT1 table entry bit value. In case of Write operation, the dedicated xQPT1T0/xQPT1T1 register bit will modify the respective QPT1 table entry bit value. The Read-Modify-Write process is controlled by the Memory Address Register (MAR). The 5 LSBs (= Bit 4..0) of the MAR register select the memory/table that will be accessed; to select the QPT table bit field MAR(4:0) must be set to 10H for QPT1 upstream table, 18H for QPT1 downstream table. Bit 5 of MAR starts the transfer and is cleared automatically after execution of the ReadModify-Write process. Table 7-20 Bit WAR Register Mapping for QPT Table Access 15 14 13 12 11 Unused(2:0) Bit 7 6 10 9 8 1 0 QueueSel(12:8) 5 4 3 2 QueueSel(7:0) QueueSel(12:0) Selects one of the 8192 queue parameter table entries. Preliminary Data Sheet 254 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 71 UQPT1T0/DQPT1T0 Upstream/Downstream QPT1 Table Transfer Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPT1T0 Typical Usage: Written by CPU during queue initialization Bit 15 14 13 70H DQPT1T0 12 11 90H 10 9 8 2 1 0 Reserved(13:6) Bit 7 6 5 4 3 Reserved(5:0) flags(1:0) Reserved(13:0) These bits are used by the device logic. Do not Write to this field as that could lead to complete malfunctioning of the ABM which can be corrected by chip reset only. flags(1:0) These bits must be written to 0 when initializing the queue. Do not Write during normal operation. Preliminary Data Sheet 255 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 72 UQPT1T1/DQPT1T1 Upstream/Downstream QPT1 Table Transfer Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPT1T1 Typical Usage: Not used by CPU Bit 15 14 13 71H DQPT1T0 12 11 91H 10 9 8 2 1 0 Reserved(15:8) Bit 7 6 5 4 3 Reserved(7:0) Reserved(15:0) These bits are used by the device logic. Do not Write to this field as that could lead to complete malfunctioning of the ABM which can be corrected by chip reset only. Preliminary Data Sheet 256 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 9: Queue Parameter Table 2 Transfer Registers Queue Parameter Table Transfer Registers are used to access the internal Upstream and Downstream Queue Parameter Table 2 (QPT2) containing 8192 entries each. In both Table 7-21 and Table 7-22 provide an overview of the registers involved. Each QPT2 entry consists of 64 bit. Table 7-21 Registers for QPT2 Upstream Table Access 63 0 QPT2 RAM entry (Upstream) 15 UQPT2T3 0 15 UQPT2T2 0 15 RAM Select: 0 15 UQPT2T1 0 15 UQPT2T0 0 MAR=11H Entry Select: 15 UQPTM3 Table 7-22 0 15 UQPTM2 0 15 0 15 UQPTM1 0 UQPTM0 15 0 WAR (0..8191D) Registers for QPT2 Downstream Table Access 63 0 QPT2 RAM entry (Downstream) 15 DQPT2T3 0 15 DQPT2T2 0 15 RAM Select: 0 15 DQPT2T1 0 15 DQPT2T0 0 MAR=19H Entry Select: 15 DQPTM3 0 15 DQPTM2 0 15 0 15 DQPTM1 DQPTM0 0 15 0 WAR (0..8191D) UQPT2T0..UQPT2T3 are the transfer registers for the 64-bit entry of the upstream QPT2 table. DQPT1T0..DQPT1T3 are the transfer registers for the 64-bit entry of the downstream QPT2 table. Access to the RAM entry is controlled by mask registers UQPTM0..UQPTM3 and DQPTM0..DQPTM3 respectively. The Mask registers are shared for access to both tables QPT1 and QPT2 whereas the transfer registers are unique for each table. Preliminary Data Sheet 257 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY The queue number representing the table entry which needs to be Read or modified must be written to the Word Address Register (WAR). The dedicated QPT2 table entry is Read into the xQPT2T0..xQPT2T3 transfer registers (x=U,D) or modified by the xQPT2T0..xQPT2T3 transfer register values with a Read-Modify-Write mechanism. The associated mask registers xQPTM0..xQPTM3 allow a bit-by-bit selection between Read (1) and Write (0) operation. In case of Read operation, the dedicated xQPT2T0..xQPT2T3 register bit will be overwritten by the respective QPT1 table entry bit value. In case of Write operation, the dedicated xQPT2T0..xQPT2T3 register bit will modify the respective QPT1 table entry bit value. The Read-Modify-Write process is controlled by the Memory Address Register (MAR). The 5 LSBs (= Bit 4..0) of the MAR register select the memory/table that will be accessed; to select the QPT table bit field MAR(4:0) must be set to 11H for QPT2 upstream table, 19H for QPT2 downstream table. Bit 5 of MAR starts the transfer and is cleared automatically after execution of the ReadModify-Write process. Table 7-23 Bit WAR Register Mapping for QPT Table Access 15 14 13 12 11 Unused(2:0) Bit 7 6 10 9 8 1 0 QueueSel(12:8) 5 4 3 2 QueueSel(7:0) QueueSel(12:0) Selects one of the 8192 queue parameter table entries. Preliminary Data Sheet 258 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 73 UQPT2T0/DQPT2T0 Upstream/Downstream QPT2 Table Transfer Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPT2T0 Typical Usage: Written by CPU during queue initialization Bit 15 14 72H 13 DQPT2T0 12 11 92H 10 9 8 2 1 0 RateFactor(15:8) Bit 7 6 5 4 3 RateFactor(7:0) RateFactor(15:0) Controls the Peak Cell Rate of the queue. It is identical to the Rate factor 'm' described in "Programming of the Peak Rate Limiter / PCR Shaper" on Page 109. The value 0 disables the PCR limiter, that is, the cells from this queue bypass the shaper circuit. Register 74 UQPT2T1/DQPT2T1 Upstream/Downstream QPT2 Table Transfer Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPT2T1 Typical Usage: Written by CPU during queue initialization Bit 15 14 13 73H DQPT2T1 12 Unused(1:0) Bit 7 6 Preliminary Data Sheet 11 93H 10 9 8 1 0 WFQFactor(13:8) 5 4 3 259 2 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY WFQFactor(7:0) WFQFactor (13:0) Determines the weight factor W of the queue at the WFQ multiplexer input to which it is connected. 1/n = W is the weight factor. The value WFQ factor = 0 connects the queue directly to the priority multiplexor bypassing the WFQ Multiplexer. (If more then one queue is connected to the priority multiplexer, then scheduled queues are served with LIFO bahavior). Register 75 UQPT2T2/DQPT2T2 Upstream/Downstream QPT2 Table Transfer Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPT2T2 Typical Usage: Not used by CPU Bit 15 14 13 74H DQPT2T2 12 11 94H 10 9 8 2 1 0 Reserved(15:8) Bit 7 6 5 4 3 Reserved(7:0) Reserved(15:0) These bits are used by the device logic. Do not Write to this field as that could lead to complete malfunctioning of the ABM which can be corrected by chip reset only. Preliminary Data Sheet 260 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 76 UQPT2T3/DQPT2T3 Upstream/Downstream QPT2 Table Transfer Register 3 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UQPT2T3 Typical Usage: Not used by CPU Bit 15 14 13 75H DQPT2T3 12 11 95H 10 9 8 2 1 0 Reserved(15:8) Bit 7 6 5 4 3 Reserved(7:0) Reserved(15:0) These bits are used by the device logic. Do not Write to this field as that could lead to complete malfunctioning of the ABM which can be corrected by chip reset only. Preliminary Data Sheet 261 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 10: Scheduler Configuration Table Integer Transfer Registers The Scheduler Configuration Table Integer Transfer Registers are used to access the internal Upstream/Downstream Scheduler Configuration Tables Integer Part (SCTI) containing 128 entries each. These tables are not addressed by the MAR and WAR regisers, but are addressed via dedicated address registers (USADR/DSADR) and data registers (USCTI/DSCTI). Table 7-24 and Table 7-25 show an overview of the registers involved. Table 7-24 Registers SCTI Upstream Table Access 31 0 SCTI RAM entry (Upstream) 15 RAM/Entry/Word select: 0 15 USCTI USADR (WSEL=1) 15 0 15 USCTI Table 7-25 0 0 USADR (WSEL=0) Registers SCTI Downstream Table Access 31 0 SCTI RAM Entry (Downstream) 15 RAM/Entry/Word select: 0 15 DSCTI DSADR (WSEL=1) 15 0 DSCTI Preliminary Data Sheet 0 262 15 0 DSADR (WSEL=0) 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY USCTI and DSCTI are the transfer registers for the 32-bit SCTI upstream/downstream table entries. The upstream and downstream Schedulers use different tables (internal RAMs) addressed via dedicated registers, USADR/DSADR. The address registers select the scheduler-specific entry as well as the high or low word of a 32-bit entry to be accessed. Further, there is no command bit, but transfers are triggered via Write access of the address registers and the data registers: * To initiate a Read access, the Scheduler number must be written to the address register USADR (upstream) or to the address register DSADR (downstream). One system clock cycle later, the data can be Read from the respective transfer register USCTI or DSCTI. * To initiate a Write access, it is sufficient to Write the desired Scheduler number to the address registers, USADR and DSADR, and then Write the desired data to the respective transfer register, USCTI or DSCTI, respectively. The transfer to the integer table is executed one system clock cycle after the Write access to USCTI or DSCTI. Thus, consecutive Write cycles may be executed by the microprocessor. The SCTI table entries are either read or written. Thus, no additional mask registers are provided for bit-wise control of table entry accesses. Register 77 USADR/DSADR Upstream/Downstream SCTI Address Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USADR Typical Usage: Written and Read by CPU to maintain the SCTI tables Bit 15 14 A0H 13 DSADR 12 11 B8H 10 9 8 2 1 0 unused(7:0) Bit 7 6 WSel WSel 5 4 3 SchedNo(6:0) SCTI table entry Word Select 1 Selects the high word (bit 31..16) for next access via register SCTIU/SCTID 0 Selects the low word (bit 15..0) for next access via register SCTIU/SCTID Preliminary Data Sheet 263 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY SchedNo(6:0) Scheduler Number Selects one of the 128 core-specific Schedulers for next access via register USCTI/DSCTI. Register 78 USCTI/DSCTI Upstream/Downstream SCTI Transfer Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCTI Typical Usage: Written by CPU to maintain the SCTI tables A1H DSCTI B9H Register SADRx.WSel = 0: Bit 15 14 13 12 unused(1:0) Bit 7 6 11 10 9 8 1 0 IntRate(13:8) 5 4 3 2 IntRate(7:0) IntRate(13:0) Integer Rate This value determines the integer part of the Scheduler output rate. Note: Recommendation for changing the UTOPIA port number or scheduler rate during operation: Disable specific scheduler by read-modify-write operation to corresponding bit in registers USCEN0/DSCEN0... USCEN7/DSCEN7. Modify scheduler specific UTOPIA port number and rates via Table 10 "Scheduler Configuration Table Integer Transfer Registers" on Page 262, registers USCTI/DSCTI and Table 11 "Scheduler Configuration Table Fractional Transfer Registers" on Page 274, registers USCTFT/DSCTFT. Enable specific scheduler by read-modify-write operation to corresponding bit in registers USCEN0/DSCEN0... USCEN7/DSCEN7. Preliminary Data Sheet 264 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Note: Read access to bit-field IntRate(13:0) is not supported and will return undefined values. The following formulars explain how the two parameters IntRate and FracRate determine the scheduler output rate R via an auxiliary parameter T: SYSCLK - [without dimension] T = -----------------------------------1 32 cells x R with * ABM core clock, [SYSCLK} = 1/s * Scheduler output rate, [R] = cells/s IntRate = int ( T ) with * int(T) is integer part of T FracRate = { T - int ( T ) } x 256 + 1 Thus IntRate and FracRate can be calculated for a given scheduler output rate R. Register SADRx.WSel = 1: Bit 15 14 13 12 11 10 9 8 3 2 1 0 Init(9:2) Bit 7 6 5 4 Init(1:0) Init(9:0) UtopiaPort(5:0) Initialization Value It is recommended to Write this bit-field to all zeroes during Scheduler configuration/initialization (see note below for further details). Preliminary Data Sheet 265 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY UtopiaPort(5:0) UTOPIA Port Number Specifies one of the 48 UTOPIA ports to which the Scheduler is assigned to. Only values in the range 0..47D are valid. The UTOPIA port number value can be changed during operation (see note below). The UTOPIA port number can be modified during operation; (port) switch-over is e.g. used for ATM protection switching. The following Notes explain switch-over and rate adaption during operation: Note: This SCTI table entry should be programmed during Scheduler configuration/ initialization. However the UTOPIA port number value can be modified during operation (e.g. for port switching). In this case the Init(9:0) value can be reset to zero. This bit-field contains a 4 bit counter incrementing the number of unused scheduler cell cycles. Unused cell cycles occur whenever a scheduled event cannot be served, because a previously generated event is still in service (active cell transfer at UTOPIA interface). This counter value is used (and decremented accordingly) to determine the allowed cell burst size for following scheduler events. Such bursts are treated as 'one event' to allow a near 100% scheduler rate utilization. The maximum burst size is programmed in registers UECRI/ DECRI on page 7-267. Thus overwriting bit-field Init(9:0) with zero during operation may invalidate some stored cell cycles, only if maximum burst size is programmed >1 for this port. Only saved scheduler cell cycles can get lost, in no means stored cells can get lost or discarded by these operations. To minimize even this small impact, value Init(9:0) can be read and written back with the new UTOPIA port number. Note: Recommendation for changing the UTOPIA port number or scheduler rate during operation: Disable specific scheduler by read-modify-write operation to corresponding bit in registers USCEN0/DSCEN0... USCEN7/DSCEN7. Modify scheduler specific UTOPIA port number and rates via Table 10 "Scheduler Configuration Table Integer Transfer Registers" on Page 262, registers USCTI/DSCTI and Table 11 "Scheduler Configuration Table Fractional Transfer Registers" on Page 274, registers USCTFT/DSCTFT. Enable specific scheduler by read-modify-write operation to corresponding bit in registers USCEN0/DSCEN0... USCEN7/DSCEN7. Preliminary Data Sheet 266 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 79 UECRI/DECRI Upstream/Downstream Empty Cycle Rate Integer Part Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UECRI Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 A2H 13 DECRI 12 MaxBurstS(3:0) Bit 7 6 5 11 BAH 10 Unused(1:0) 4 3 2 9 8 ECIntRate(9:8) 1 0 ECIntRate(7:0) Preliminary Data Sheet 267 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY MaxBurstS(3:0) Maximum Burst size for a Scheduler Per scheduler cell bursts can occur due to previously unused cell cycles. Each scheduler has an event generator that determines when this scheduler should be served based on the programmed scheduler rates. Because several schedulers share one UTOPIA interface, it may happen that events cannot be served immediately due to active cell transfers of previous events. Such 'unused cell cycles' are counted (see also registers USCTI/DSCTI on page 7264) and can be used for later cell bursts allowing a near 100% scheduler rate utilization. Cell bursts due to this mechanism are not rate limited. The maximum burst size, generated due to previously counted 'unused cell cycles', is controlled by bit field MaxBurstS(3:0) in the range 0..15 cells (a minimum value of 1 is recommended). Maximum burst size dimensioning depends on the burst tolerance of subsequent devices (buffer capacity and backpressure capability). E.g. if PHY(s) connected to the ABM do not support backpressure and provide a 3 cell transmit buffer, a value in the range 1..3 is recommended to avoid PHY buffer overflows resulting in cell losses (e.g. typical for ADSL PHYs connected to the ABM). If a PHY is connected that supports port specific backpressure to prevent its transmit buffers from overflowing or provides sufficient buffering, the maximum value of 15 can be programmed guaranteeing a near 100% scheduler rate utilization. Preliminary Data Sheet 268 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY ECIntRate(9:0) Integer part of Empty Cycle Rate The empty cycles are required by internal logic to perform the refresh cycles of the SDRAMS. Minimum value is 10H and should be programmed during configuration. The following formulars explain how the two parameters ECIntRate and ECFracRate determine the scheduler output rate R via an auxiliary parameter T: SYSCLK x RefreshPeriod T max = -------------------------------------------------------------------------32 x RefreshCycles (8) with: * ABM core clock SYSCLK = [1/s] * SDRAM RefreshPeriod = [s] * SDRAM RefreshCycles requirement ECIntRate = int ( T ) with * int(T) is integer part of T ECFracRate = { T - int ( T ) } x 256 + 1 Thus ECIntRate and ECFracRate can be calculated for a given scheduler output rate R. (see "Empty Cell Rate Calculation Example" on Page 111) Preliminary Data Sheet 269 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 80 UECRF/DECRF Upstream/Downstream Empty Cycle Rate Fractional Part Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UECRF Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 A3H 13 DECRF 12 11 BBH 10 9 8 2 1 0 Unused(7:0) Bit 7 6 5 4 3 ECFracRate(7:0) Preliminary Data Sheet 270 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY ECFracRate(7:0) Fractional part of Empty Cycle Rate The empty cycles are required by internal logic to perform the refresh cycles of the SDRAMS. Recommended value is 00H and should be programmed during configuration. The following formulars explain how the two parameters ECIntRate and ECFracRate determine the scheduler output rate R via an auxiliary parameter T: SYSCLK x RefreshPeriod T max = -------------------------------------------------------------------------32 x RefreshCycles (8) with: * ABM core clock SYSCLK = [1/s] * SDRAM RefreshPeriod = [s] * SDRAM RefreshCycles requirement ECIntRate = int ( T ) with * int(T) is integer part of T ECFracRate = { T - int ( T ) } x 256 + 1 Thus ECIntRate and ECFracRate can be calculated for a given scheduler output rate R. (see "Empty Cell Rate Calculation Example" on Page 111) Preliminary Data Sheet 271 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 81 UCRTQ/DCRTQ Upstream/Downstream Common Real Time Queue UTOPIA Port Select Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UCRTQ Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 A4H 13 DCRTQ 12 11 BCH 10 9 8 2 1 0 Unused(9:2) Bit 7 6 5 4 3 Unused(1:0) CtrqUtopia(4:0) CrtqUtopia(5:0) Common Real Time Queue UTOPIA Port Number. Specifies one of the 48 UTOPIA ports to which the common real time queue is assigned. Only values in the range 0..47D are valid. Register 82 USCTFM/DSCTFM Upstream/Downstream SCTF Mask Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCTFM Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 13 A5H DSCTFM 12 11 BDH 10 9 8 2 1 0 SCTFM(15:8) Bit 7 6 5 4 3 SCTFM(7:0) Preliminary Data Sheet 272 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY USCTFM(15:0) Upstream SCTF Mask Register DSCTFM(15:0) Downstream SCTF Mask Register USCTFM and DSCTFM control the Read-Modify-Write access from the respective transfer registers to the internal tables on a per-bit selection basis. The mask registers correspond to the respective transfer registers (USCTFT, DSCTFT): 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but does overwrite the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during the Modify-Write process. This is a Read access to the internal table entry. Preliminary Data Sheet 273 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 11: Scheduler Configuration Table Fractional Transfer Registers The Scheduler Configuration Table Fractional Transfer Registers are used to access the internal Upstream/Downstream Scheduler Configuration Tables Fractional Part (SCTF) containing 128 entries each. Table 7-26 and Table 7-27 summarize the registers. Table 7-26 Registers SCTF Upstream Table Access 15 0 SCTF RAM Entry (Upstream) 15 RAM Select: 0 15 USCTF 0 MAR=17H Entry Select: 15 0 15 USCTFM Table 7-27 0 WAR (0..127D) Registers SCTF Downstream Table Access 15 0 SCTF RAM Entry (Downstream) 15 RAM Select: 0 15 DSCTF 0 MAR=1FH Entry Select: 15 0 15 DSCTFM 0 WAR (0..127D) SCTFU and SCTFD are transfer registers for one 16-bit SCTF upstream/downstream table entry. The upstream and downstream Schedulers use different tables (internal RAMs) addressed via the MAR. The Scheduler number representing the table entry which needs to be Read or modified must be written to the WAR (Word Address Register). The dedicated SCTFU/D table entry is Read into the SCTFU/D registers or modified by the SCTFU/D register value with a Read-Modify-Write mechanism. The associated mask registers, SMSKU and SMSKD, allow a bit-by-bit selection between Read (1) and Write (0) operation. In case of Read operation, the dedicated SCTFU/D register bit will be overwritten by the respective SCTFU/D table entry bit value. In case Preliminary Data Sheet 274 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY of Write operation, the dedicated SCTFU/D register bit will modify the value of the respective SCTFU/D table entry bit. The Read-Modify-Write process is controlled by the MAR (Memory Address Register). The 5 LSBs (= Bit 4..0) of the MAR register select the memory/table that will be accessed; to select the SCTF Upstream table, bit field MAR(4:0) must be set to 17H and 1FH for the SCTF Downstream table respectively. Bit 5 of MAR starts the transfer and is automatically cleared after execution of the Read-Modify-Write process. Table 7-28 Bit WAR Register Mapping for SCTFU/SCTFD Table access 15 14 13 12 11 10 9 8 2 1 0 Unused(9:2) Bit 7 6 5 4 3 unused SchedSel(6:0) SchedSel(6:0) Selects one of the 128 core specific Schedulers. Register 83 USCTFT/DSCTFT Upstream/Downstream SCTF Transfer Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCTFT Typical Usage: Written and Read by CPU to maintain the SCTF tables Bit 15 14 13 A6H DSCTFT 12 BEH 11 10 9 8 3 2 1 0 Init(7:0) Bit 7 6 5 4 FracRate(7:0) Preliminary Data Sheet 275 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Init(7:0) Scheduler Initialization Value This bit-field must be written to 00 H at the time of Scheduler configuration/initialization and should not be written during normal operation. FracRate(7:0) Fractional Rate This value determines the fractional part of the Scheduler output rate. Note: Recommendation for changing the UTOPIA port number or scheduler rate during operation: Disable specific scheduler by read-modify-write operation to corresponding bit in registers USCEN0/DSCEN0... USCEN7/DSCEN7. Modify scheduler specific UTOPIA port number and rates via Table 10 "Scheduler Configuration Table Integer Transfer Registers" on Page 262, registers USCTI/DSCTI and Table 11 "Scheduler Configuration Table Fractional Transfer Registers" on Page 274, registers USCTFT/DSCTFT. Enable specific scheduler by read-modify-write operation to corresponding bit in registers USCEN0/DSCEN0... USCEN7/DSCEN7. The following formulars explain how the two parameters IntRate and FracRate determine the scheduler output rate R via an auxiliary parameter T: SYSCLK T = -----------------------------------1 32 cells x R [without dimension] with * ABM core clock, [SYSCLK} = 1/s * Scheduler output rate, [R] = cells/s IntRate = int ( T ) with * int(T) is integer part of T FracRate = { T - int ( T ) } x 256 + 1 Thus IntRate and FracRate can be calculated for a given scheduler output rate R. Preliminary Data Sheet 276 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 84 USCEN0/DSCEN0 Upstream/Downstream Scheduler Enable 0 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCEN0 Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 A8H 13 DSCEN0 12 11 C0H 10 9 8 2 1 0 SchedEn(15:8) Bit 7 6 5 4 3 SchedEn(7:0) SchedEn(15:0) Scheduler Enable Each bit position enables/disables the respective Scheduler (15..0): 1 Scheduler enabled 0 Scheduler disabled Register 85 USCEN1/DSCEN1 Upstream/Downstream Scheduler Enable 1 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCEN0 Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 13 A9H DSCEN0 12 11 C1H 10 9 8 2 1 0 SchedEn(31:24) Bit 7 6 5 4 3 SchedEn(23:16) Preliminary Data Sheet 277 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY SchedEn(31:16) Scheduler Enable Each bit position enables/disables the respective Scheduler (31..16): 1 Scheduler enabled 0 Scheduler disabled Register 86 USCEN2/DSCEN2 Upstream/Downstream Scheduler Enable 2 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCEN2 Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 AAH 13 DSCEN2 12 11 C2H 10 9 8 2 1 0 SchedEn(47:40) Bit 7 6 5 4 3 SchedEn(39:32) SchedEn(47:32) Scheduler Enable Each bit position enables/disables the respective Scheduler (47..32): 1 Scheduler enabled 0 Scheduler disabled Preliminary Data Sheet 278 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 87 USCEN3/DSCEN3 Upstream/Downstream Scheduler Enable 3 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCEN3 Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 ABH 13 DSCEN3 12 11 C3H 10 9 8 2 1 0 SchedEn(63:56) Bit 7 6 5 4 3 SchedEn(55:48) SchedEn(63:48) Scheduler Enable Each bit position enables/disables the respective Scheduler (63..48): 1 Scheduler enabled 0 Scheduler disabled Register 88 USCEN4/DSCEN4 Upstream/Downstream Scheduler Enable 4 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCEN4 Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 13 ACH DSCEN4 12 11 C4H 10 9 8 2 1 0 SchedEn(79:72) Bit 7 6 5 4 3 SchedEn(71:64) Preliminary Data Sheet 279 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY SchedEn(79:64) Scheduler Enable Each bit position enables/disables the respective Scheduler (79..64): 1 Scheduler enabled 0 Scheduler disabled Register 89 USCEN5/DSCEN5 Upstream/Downstream Scheduler Enable 5 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCEN5 Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 ADH 13 DSCEN5 12 11 C5H 10 9 8 2 1 0 SchedEn(95:88) Bit 7 6 5 4 3 SchedEn(87:80) SchedEn(95:80) Scheduler Enable Each bit position enables/disables the respective Scheduler (95..80): 1 Scheduler enabled 0 Scheduler disabled Preliminary Data Sheet 280 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 90 USCEN6/DSCEN6 Upstream/Downstream Scheduler Enable 6 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCEN6 Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 AEH 13 DSCEN6 12 11 C6H 10 9 8 2 1 0 SchedEn(111:104) Bit 7 6 5 4 3 SchedEn(103:96) SchedEn (111:96) Scheduler Enable Each bit position enables/disables the respective Scheduler (111..96): 1 Scheduler enabled 0 Scheduler disabled Register 91 USCEN7/DSCEN7 Upstream/Downstream Scheduler Enable 7 Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: USCEN7 Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 13 AFH DSCEN7 12 11 C7H 10 9 8 2 1 0 SchedEn(127:120) Bit 7 6 5 4 3 SchedEn(119:112) Preliminary Data Sheet 281 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY SchedEn (127:112) Scheduler Enable Each bit position enables/disables the respective Scheduler (127..112): 1 Scheduler enabled 0 Scheduler disabled Register 92 UCRTRI/DCRTRI Upstream/Downstream CRT Rate Integer Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UCRTRI Typical Usage: Written by CPU for global Scheduler configuration Bit 15 14 B0H 13 DCRTRI 12 11 C8H 10 Unused(5:0) Bit 7 6 5 4 9 8 CRTIntRate(9:8) 3 2 1 0 CRTIntRate(7:0) Preliminary Data Sheet 282 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY CRTIntRate(9:0) Integer part of CRT Queue Rate The following formulars explain how the two parameters CRTIntRate and CRTFracRate determine the CRT Queue output rate R via an auxiliary parameter T: SYSCLK x RefreshPeriod T max = -------------------------------------------------------------------------32 x RefreshCycles (8) with: * ABM core clock SYSCLK = [1/s] * SDRAM RefreshPeriod = [s] * SDRAM RefreshCycles requirement CRTIntRate = int ( T ) with * int(T) is integer part of T ceil { T - int ( T ) } x 256 CRTFracRate = Thus CRTIntRate and CRTFracRate can be calculated for a given rate R. Register 93 UCRTRF/DCRTRF Upstream/Downstream CRT Rate Fractional Registers CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UCRTRF Typical Usage: Written and Read by CPU Bit 15 14 13 B1H DCRTRF 12 C9H 11 10 9 8 3 2 1 0 Init(7:0) Bit 7 6 5 4 CRTFracRate(7:0) Preliminary Data Sheet 283 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Init(7:0) Scheduler Initialization Value This bit-field must be written to 00 H at the time of Scheduler configuration/initialization and should not be written during normal operation. CRTFracRate (7:0) CRT Fractional Rate This value determines the fractional part of the CRT Queue output rate. The following formulars explain how the two parameters CRTIntRate and CRTFracRate determine the scheduler output rate R via an auxiliary parameter T: SYSCLK T = -----------------------------------1 32 cells x R [without dimension] with * ABM core clock, [SYSCLK} = 1/s * Scheduler output rate, [R] = cells/s CRTIntRate = int ( T ) with * int(T) is integer part of T CRTFracRate = { T - int ( T ) } x 256 + 1 Thus CRTIntRate and CRTFracRate can be calculated for a given CRT Queue output rate R. Preliminary Data Sheet 284 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Internal Table 12: ABR/VBR Table Transfer Registers ABR/VBR Context Table Transfer Registers are used to access the ABR/VBR Context Table (AVT) containing 1024 context entries. Each context entry consists of 8*32 bit words. Table 7-29 provides an overview of the registers involved. Each AVT word consists of 32 bit. Table 7-29 Registers for AVT Table Access 31 0 AVT RAM word 15 0 15 ERCT1 RAM Select: 0 15 ERCT0 0 MAR=08H Entry Select: 15 0 15 ERCM1 0 ERCM0 15 0 WAR: EntrySel(9:0) = (0..1023D) WordSel(2:0) = (0..7D) ERCT0 and ERCT1 are the transfer registers for one 32-bit word of the AVT table. Access to words are controlled by mask registers ERCM0/ERCM1. The context entry number and the corresponding word number representing the table word which needs to be Read or modified must be written to the Word Address Register (WAR). The dedicated AVT table word is Read into the ERCT0/ERCT1 transfer registers or modified by the ERCT0/ERCT1 transfer register values with a Read-Modify-Write mechanism. The associated mask registers ERCM0 and ERCM1 allow a bit-by-bit selection between Read (1) and Write (0) operation. In case of Read operation, the dedicated ERCT0/ERCT1 register bit will be overwritten by the respective AVT table entry bit value. In case of Write operation, the dedicated ERCT0/ERCT1 register bit will modify the respective AVT table entry bit value. The Read-Modify-Write process is controlled by the Memory Address Register (MAR). The 5 LSBs (= Bit 4..0) of the MAR register select the memory/table that will be accessed; to select the AVT table bit field MAR(4:0) must be set to 08H. Preliminary Data Sheet 285 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Bit 5 of MAR starts the transfer and is cleared automatically after execution of the ReadModify-Write process. Table 7-30 Bit WAR Register Mapping for AVT Table Access 15 14 13 12 11 Unused(2:0) Bit 7 6 10 9 8 1 0 EntrySel(9:5) 5 4 3 2 EntrySel(4:0) WordSel(2:0) EntrySel(9:0) Selects one of the 1024 AVT table context entries. WordSel(2:0) Selects one of the 8 DWORDs per AVT table context entries. Register 94 ERCT0 AVT Table Transfer Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCT0 Typical Usage: Written and Read by CPU Bit 15 14 CAH 13 12 11 10 9 8 2 1 0 Word0(15:8) Bit 7 6 5 4 3 Word0(7:0) Preliminary Data Sheet 286 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Word0(15:0) The meaning of the 'Word0' depends on 1. The selected context entry word (WordSel(2:0)) 2. The mode of this particular context entry For detailed description of the context entry fields refer to "AVT Context RAM Organization and Addressing" on Page 93 f. Register 95 ERCT1 AVT Table Transfer Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCT1 Typical Usage: Written and Read by CPU Bit 15 14 CBH 13 12 11 10 9 8 2 1 0 Word1(31:24) Bit 7 6 5 4 3 Word1(23:16) Word1(31:16) The meaning of the 'Word1' depends on 1. The selected context entry word (WordSel(2:0)) 2. The mode of this particular context entry For detailed description of the context entry fields refer to ???) Preliminary Data Sheet 287 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 96 ERCM0 AVT Table Access Mask Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCM0 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 CCH 13 12 11 10 9 8 2 1 0 ERCM0(15:8) Bit 7 6 5 4 3 ERCM0(7:0) ERCM0(15:0) ERC Mask Register 0 ERC Mask Registers 0..1 control the Read-Modify-Write access from transfer registers ERCT0 and ERCT1 to the internal AVT table on a per-bit selection basis. The mask register bit positions correspond to the respective transfer registers ERCT0 and ERCT1: 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Preliminary Data Sheet 288 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 97 ERCM1 AVT Table Access Mask Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCM0 Typical Usage: Written by CPU to control internal table Read/Write access Bit 15 14 CDH 13 12 11 10 9 8 2 1 0 ERCM1(31:24) Bit 7 6 5 4 3 ERCM1(23:16) ERCM1(31:16) ERC Mask Register 1 ERC Mask Registers 0..1 control the Read-Modify-Write access from transfer registers ERCT0 and ERCT1 to the internal AVT table on a per-bit selection basis. The mask register bit positions correspond to the respective transfer registers ERCT0 and ERCT1: 0 The dedicated bit of the transfer register is not overwritten by the corresponding table entry bit during Read; but overwrites the table entry bit during the Modify-Write process. This is a Write access to the internal table entry. 1 The dedicated bit of the transfer register is overwritten by the corresponding table entry bit during Read and is written back to the table entry bit during Modify-Write. This is a Read access to the internal table entry. Preliminary Data Sheet 289 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 98 ERCMB0 ERC MailBox Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCMB0 Typical Usage: Written and Read by CPU D2H Bit 15 14 13 12 11 10 9 8 Bit 7 6 5 4 3 2 1 0 Preliminary Data Sheet 290 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 99 ERCMB1 ERC MailBox Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCMB1 Typical Usage: Written and Read by CPU D3H Bit 15 14 13 12 11 10 9 8 Bit 7 6 5 4 3 2 1 0 Preliminary Data Sheet 291 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 100 ERCMB2 ERC MailBox Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCMB2 Typical Usage: Written and Read by CPU D4H Bit 15 14 13 12 11 10 9 8 Bit 7 6 5 4 3 2 1 0 Preliminary Data Sheet 292 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 101 ERCCONF0 ERC Configuration Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCCONF0 D5H Typical Usage: Written and Read by CPU Bit 15 14 FWDF Bit 7 13 12 unused(3:0) 6 5 4 10 9 8 QIDFR QIDFE SCAND 2 1 0 3 SCANP(6:0) VBRFW FWDF 11 Firmware Download Finished 0 1 QIDFR QID Filter RM FIFO 0 QID Filter for RM FIFO enabled 1 QID Filter for RM FIFO disabled (Bypass) Note: QIDFE QID Filter EMIT FIFO 0 QID Filter for EMIT FIFO enabled 1 QID Filter for EMIT FIFO disabled (Bypass) Note: SCAND SCAN Disable Preliminary Data Sheet 293 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY 0 1 VBRFW VBR Firmware Mode 0 1 SCANP(6:0) SCAN Period 0 1 Register 102 ERCCONF1 ERC Configuration Register 1 CPU Accessibility: Read/Write Reset Value: 000AH Offset Address: ERCCONF1 D6H Typical Usage: Written and Read by CPU Bit 15 14 13 12 11 10 9 8 2 1 0 unused(11:4) Bit 7 6 5 4 3 unused(3:0) Preliminary Data Sheet TRM(3:0) 294 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY TRM(3:0) ABR TRM Parameter Global for all connections. The bit-field TRM(3:0) determines a 10ms counter: Tout := TRM(3:0) * 10ms The default (reset) value is 000AH which equals to 100ms. Preliminary Data Sheet 295 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 103 PLL1CONF PLL1 Configuration Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: PLL1CONF Typical Usage: Written and Read by CPU Bit Bit D7H 15 14 13 12 11 10 Locked1 Dev2En1 Dev1En1 BYPASS1 PU1 RES1 7 6 5 4 3 2 M1(1:0) 9 8 M1(3:2) 1 0 N1(5:0) DPLL1 generates a clock that is an alternative clock source for the ABMP. The DPLL1 is feeded by clock input signal `SYSCLK'. Signal `SYSCLKSEL' determines the clock source of the ABMP. LOCKED1 DEV2EN1 DEV1EN1 DPLL1 Locked (read only) 1 DPLL1 is locked based on the current parameter setting. 0 DPLL1 is in transient status. Devision Factor 2 Enable for DPLL1 This bit enables one of the additional devide by 2 factors subsequent to the DPLL1 output. 0 Devision Factor 2 disabled. 1 Devision Factor 2 enabled. Devision Factor 1 Enable for DPLL1 This bit enables one of the additional devide by 2 factors subsequent to the DPLL1 output. 0 Devision Factor 1 disabled. 1 Devision Factor 1 enabled. Preliminary Data Sheet 296 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY BYPASS1 PU1 RES1 DPLL1 Bypass Switching between bypass and non-bypass mode is glitch-free with respect to the internal clock output. The DPLL1 is bypassed after power-on reset and can be switched to non-bypass mode by software during device configuration. 0 DPLL1 is internally bypassed, i.e. DPLL1 clock input connected to DPLL1 clock output 1 DPLL1 is not bypassed, i.e. DPLL1 clock output is generated by DPLL1 depending on its parameter configuration Power Up DPLL1 0 DPLL1 is in power-down mode. (The analog part of DPLL1 is switched-off for power saving.) 1 DPLL1 is in power on (operational) mode. Reset DPLL1 0 DPLL1 is in operational mode. 1 DPLL1 is in reset mode. Note: The result of reset mode is identical to bypass mode, but switching between reset and non-reset status is not glitch-free with respect to the internal clock output. M1(3:0) M1 Parameter of DPLL1 This parameter determines the first stage division factor of DPLL1. The effective division factor is (M1 + 1) in the range 1..16. N1(5:0) N1 Parameter of DPLL1 This parameter determines the second stage multiplication factor of DPLL1. The effective multiplication factor is (N1 + 1) in the range 1..64. Preliminary Data Sheet 297 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 104 PLL2CONF PLL2 Configuration Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: PLL2CONF Typical Usage: Written and Read by CPU Bit 15 14 Locked2 Bit 7 6 D8H 13 12 11 10 Dev1En2 BYPASS2 PU2 RES2 5 4 3 2 M2(1:0) 9 8 M2(3:2) 1 0 N2(5:0) DPLL2 generates a clock that is an alternative clock source for the ERC unit. The DPLL2 is feeded by clock input signal `SYSCLK'. Signal `IOPCLKSEL' determines the clock source of the ERC unit. LOCKED2 DEV1EN2 BYPASS2 DPLL2 Locked (read only) 1 DPLL2 is locked based on the current parameter setting. 0 DPLL2 is in transient status. Devision Factor 1 Enable for DPLL2 This bit enables the additional devide by 2 factor subsequent to the DPLL2 output. 0 Devision Factor 1 disabled. 1 Devision Factor 1 enabled. DPLL2 Bypass Switching between bypass and non-bypass mode is glitch-free with respect to the internal clock output. The DPLL2 is bypassed after power-on reset and can be switched to non-bypass mode by software during device configuration. Preliminary Data Sheet 298 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY PU2 RES2 0 DPLL2 is internally bypassed, i.e. DPLL2 clock input connected to DPLL2 clock output 1 DPLL2 is not bypassed, i.e. DPLL2 clock output is generated by DPLL2 depending on its parameter configuration Power Up DPLL2 0 DPLL2 is in power-down mode. (The analog part of DPLL2 is switched-off for power saving.) 1 DPLL2 is in power on (operational) mode. Reset DPLL2 0 DPLL2 is in operational mode. 1 DPLL2 is in reset mode. Note: The result of reset mode is identical to bypass mode, but switching between reset and non-reset status is not glitch-free with respect to the internal clock output. M2(3:0) M2 Parameter of DPLL2 This parameter determines the first stage division factor of DPLL2. The effective division factor is (M2 + 1) in the range 1..16. N2(5:0) N2 Parameter of DPLL2 This parameter determines the second stage multiplication factor of DPLL2. The effective multiplication factor is (N2 + 1) in the range 1..64. Preliminary Data Sheet 299 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 105 PLLTST PLL Test Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: PLLTST Typical Usage: Written and Read by CPU D9H Bit 15 14 13 12 11 10 9 8 Bit 7 6 5 4 3 2 1 0 Preliminary Data Sheet 300 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 106 ERCRAC ERC Register Access Control Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCRAC Typical Usage: Written and Read by CPU Bit 15 14 13 DAH 12 11 10 9 8 unused(8:1) Bit 7 6 5 4 3 2 1 0 unused0 ERCACF IUPAC ERCRTAC IERCAC UPRTAC ERCRD ERCWR ERCWR ERC Write Access 0 1 ERCRD ERC Read Access 0 1 UPRTAC UP RAM Transfer Access 0 1 IERCRAC Inhibit ERC Register Access 0 1 ERCRTAC ERC RAM Transfer Access 0 Preliminary Data Sheet 301 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY 1 IUPRAC Inhibit UP Register Access 0 1 ERCACF ERC Access Free 0 1 Preliminary Data Sheet 302 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 107 ERCRAM ERC Register Access Mask Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ERCRAM Typical Usage: Written and Read by CPU Bit 15 14 13 DBH 12 11 10 9 8 2 1 0 MASK(15:8) Bit 7 6 5 4 3 MASK(7:0) Preliminary Data Sheet 303 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 108 VERL Version Number Low Register CPU Accessibility: Read Reset Value: F083H Offset Address: VERL Typical Usage: Read by CPU to determine device version number Bit 15 14 E1H 13 12 11 10 9 8 2 1 0 VERL(15..8) Bit 7 6 5 4 3 VERL(7..0) * VERL(15..0) F083H Register 109 VERH Version Number High Register CPU Accessibility: Read Reset Value: 1007H Offset Address: VERH Typical Usage: Read by CPU to determine device version number Bit 15 14 E2H 13 12 11 10 9 8 2 1 0 VERH(15..8) Bit 7 6 5 4 3 VERH(7..0) VERH(15..0) 1007H Preliminary Data Sheet 304 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 110 ISRU Interrupt Status Register Upstream CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ISRU Typical Usage: Read by CPU to evaluate interrupt events related to the upstream core. Interrupt indications must be cleared by writing a 1 to the respective bit locations; writing a 0 has no effect; Bit E3H 15 14 13 12 11 Unused BCFGE QIDINV BUFER 1 LCI INVAL 7 6 5 4 3 Bit BUFER 3 CDVOV MUXOV AAL5 COL 10 9 8 PARITY SOCER ER 2 RMCER BIP8ER BUFER 2 1 0 BUFER 5 VCRM ER BCFGE Buffer Configuration Error QIDINV This interrupt is generated if the ABM tries to write a cell into a disabled queue. The cell is discarded in this case. (Typically occurs on queue configuration errors.) BUFER1 Unexpected buffer error number 1. Should never occur in normal operation. Immediate reset of the chip recommended. LCIINVAL Cell with invalid LCI received, that is, a LCI value > 16383. The cell is discarded. PARITYER Parity error at UTOPIA receive upstream (PHY) Interface detected. SOCER Start of Cell Error at UTOPIA receive upstream (PHY) Interface detected. Preliminary Data Sheet 305 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY BUFER2 Unexpected Buffer Error number 2. Should never occur in normal operation. Immediate reset of the chip is recommended. BUFER3 Unexpected Buffer Error number 3. Should never occur in normal operation. Immediate reset of the chip is recommended. CDVOV The maximum upstream CDV value for shaped connections given in CDVU register has been exceeded. This interrupt is a notification only; that is, no cells are discarded due to this event. MUXOV Indicates that a Scheduler lost a serving time slot. (Can indicate a static backpressure on one port). The 'MUXOV' interrupt is generated when the number of lost serving time slots exceeds the number specified in bit field MaxBurstS(3:0) (see register UECRI/DECRI). No further action is required upon this interrupt. AAL5COL Indicates that an interrupt event occured in the upstream AAL5 unit. The interrupt reason must be read from the AAL5 status register "UA5SARS/DA5SARS" on Page 167 (upstream). BUFER4/ CNTUF Indicates that a scheduler specific counter for 'unused cell cycles' has falsely been set to its maximum value by device logic (maximum value is determined by parameter MaxBurstS(3:0) programmed in register UECRI/DECRI). This can occur when either the scheduler rate or the UTOPIA port number are changed during operation without disabling the scheduler. As a consequence a burst of up to MaxBurstS(3:0) cells can be sent out that is not justified by previously saved cell cycles. No cells are discarded due to this event and no further action is required upon this interrupt. RMCER ABR RM Cell received with corrupted CRC-10. Preliminary Data Sheet 306 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY BIP8ER BIP-8 error detected when reading a cell from the upstream external SDRAM. BIP-8 protects the cell header of each cell. The cell is discarded. One single sporadic event can be ignored. Hardware should be taken out of service when the error rate exceeds 10-10. BUFER5 Unexpected Buffer Error number 5. Should never occur in normal operation. Immediate reset of the chip recommended. For consistency check the ABMP stores the queue ID with each cell written to the respective queue within the cell storage RAM. When reading a cell from the cell storage RAM, the queue ID is compared to the stored queue ID. A queue ID mismatch would indicate a global buffering/pointer problem. VCRMER VC RM Cell received erroneously when traffic class is configured for ABR VPs using bit ABRvp in Register TCT1 (see Register 40: TCT1). Note: Several mechanisms are implemented in the ABM to check for consistency of pointer operation and internal/external memory control. The interrupt events BUFFER1..BUFFER5 indicate errors detected by these mechanisms. It is recommended that these interrupts be classified as "fatal device errors." Preliminary Data Sheet 307 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 111 ISRD Interrupt Status Register Downstream CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ISRD Typical Usage: Read by CPU to evaluate interrupt events related to the upstream core. Interrupt indications must be cleared by writing a 1 to the respective bit locations; writing a 0 has no effect; Bit 15 14 Unused(1:0) Bit 7 BUFER 3 6 E4H 13 12 11 QIDINV BUFER 1 LCI INVAL 5 4 3 CDVOV MUXOV AAL5 COL 10 9 PARITY SOCER ER 2 RMCER BIP8ER 8 BUFER 2 1 0 BUFER 5 VCRM ER QIDINV This interrupt is generated if the ABM tries to Write a cell into a disabled queue. The cell is discarded. (Typically occurs on queue configuration errors.) BUFER1 Unexpected Buffer Error number 1. Should never occur in normal operation. Immediate reset of the chip is recommended. LCIINVAL Cell with invalid LCI received, i.e. a LCI value >16383. The cell is discarded. PARITYER Parity Error at UTOPIA receive downstream (PHY) interface detected. SOCER Start of Cell Error at UTOPIA receive downstream (PHY) interface detected. Preliminary Data Sheet 308 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY BUFER2 Unexpected Buffer Error number 2. Should never occur in normal operation. Immediate reset of the chip is recommended. BUFER3 Unexpected Buffer Error number 3. Should never occur in normal operation. Immediate reset of the chip recommended. CDVOV The maximum downstream CDV value for shaped connections given in CDVU register has been exceeded. This interrupt is a notification only; that is, no cells are discarded due to this event. MUXOV Indicates that a Scheduler lost a serving time slot. (Can indicate a static backpressure on one port). The 'MUXOV' interrupt is generated when the number of lost serving time slots exceeds the number specified in bit field MaxBurstS(3:0) (see register UECRI/DECRI). No further action is required upon this interrupt. AAL5COL Indicates that an interrupt event occured in the downstream AAL5 unit. The interrupt reason must be read from the AAL5 status register "UA5SARS/DA5SARS" on Page 167 (downstream). BUFER4/ CNTUF Indicates that a scheduler specific counter for 'unused cell cycles' has falsely been set to its maximum value by device logic (maximum value is determined by parameter MaxBurstS(3:0) programmed in register UECRI/DECRI). This can occur when either the scheduler rate or the UTOPIA port number are changed during operation without disabling the scheduler. As a consequence a burst of up to MaxBurstS(3:0) cells can be sent out that is not justified by previously saved cell cycles. No cells are discarded due to this event and no further action is required upon this interrupt. RMCER ABR RM cell received with corrupted CRC-10. Preliminary Data Sheet 309 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY BIP8ER BIP-8 error detected when reading a cell from the downstream external SDRAM. BIP-8 protects the cell header of each cell. The cell is discarded. One single sporadic event can be ignored. Hardware should be taken out of service when the error rate exceeds 10-10. BUFER5 Unexpected Buffer Error number 5. Should never occur in normal operation. Immediate reset of the chip is recommended. For consistency check the ABMP stores the queue ID with each cell written to the respective queue within the cell storage RAM. When reading a cell from the cell storage RAM, the queue ID is compared to the stored queue ID. A queue ID mismatch would indicate a global buffering/pointer problem. VCRMER VC RM Cell received erroneously, when traffic class is configured for ABR VPs using bit ABRvp TCT1(see Register 40: TCT1). Note: Several mechanisms are implemented in the ABM to check for consistency of pointer operation and internal/external memory control. The interrupt events BUFFER1..BUFFER5 indicate errors detected by these mechanisms. It is recommended that these interrupts be classified as "fatal device errors." Preliminary Data Sheet 310 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 112 ISRC Interrupt Status Register Common CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ISRC Typical Usage: Read by CPU to evaluate interrupt events related to both cores. Interrupt indications must be cleared by writing a 1 to the respective bit locations; writing a 0 has no effect; Bit 15 14 E5H 13 12 11 10 9 8 2 1 0 DQ VCMGD UQ VCMGD Unused(10:3) Bit 7 6 Unused(2:0) 5 4 3 RAMER DDQRD UDQRD RAMER Configuration of common Cell Pointer RAM has been changed after cells have been received (see Register MODE1, bit field CPR). DDQRD Downstream Dummy Queue Relogged/Deactivated This interrupt confirms the dummy queue operation being deactivated. UDQRD Upstream Dummy Queue Relogged/Deactivated This interrupt confirms the dummy queue operation being deactivated. DQVCMGD Downstream Queue VC-Merge Group Deactivated This interrupt confirms the VC-Merge group being deactivated. UQVCMGD Upstream Queue VC-Merge Group Deactivated This interrupt confirms the VC-Merge group being deactivated. Preliminary Data Sheet 311 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 113 IMRU Interrupt Mask Register Upstream CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: IMRU Typical Usage: Written by CPU to control interrupt signal effective events Bit 15 14 E6H 13 12 11 10 9 8 2 1 0 IMRU(15:8) Bit 7 6 5 4 3 IMRU(7:0) IMRU(15:0) Interrupt Mask Upstream Each bit controls whether the corresponding interrupt indication in register ISRU (same bit location) activates the interrupt signal: 1 Interrupt indication masked. The interrupt signal is not activated upon this event. 0 Interrupt indication unmasked. The interrupt signal is activated upon this event. Preliminary Data Sheet 312 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 114 IMRD Interrupt Mask Register Downstream CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: IMRD Typical Usage: Written by CPU to control interrupt signal effective events Bit 15 14 E7H 13 12 11 10 9 8 2 1 0 IMRD(15:8) Bit 7 6 5 4 3 IMRD(7:0) IMRD(15:0) Interrupt Mask Downstream Each bit controls whether the corresponding interrupt indication in register ISRD (same bit location) activates the interrupt signal: 1 Interrupt indication masked. The interrupt signal is not activated upon this event. 0 Interrupt indication unmasked. The interrupt signal is activated upon this event. Preliminary Data Sheet 313 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 115 IMRC Interrupt Mask Register Common CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: IMRC Typical Usage: Written by CPU to control interrupt signal effective events Bit 15 14 E8H 13 12 11 10 9 8 2 1 0 IMRC(15:8) Bit 7 6 5 4 3 IMRC(7:0) IMRU(15:0) Interrupt Mask Upstream Each bit controls whether the corresponding interrupt indication in register ISRU (same bit location) activates the interrupt signal: 1 Interrupt indication masked. The interrupt signal is not activated upon this event. 0 Interrupt indication unmasked. The interrupt signal is activated upon this event. Preliminary Data Sheet 314 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 116 ISRDBA Interrupt Status Register DBA CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: ISRDBA Typical Usage: Read by CPU to evaluate interrupt events related to both cores. Interrupt indications must be cleared by writing a 1 to the respective bit locations; writing a 0 has no effect; Bit 15 14 E9H 13 12 11 10 9 8 2 1 0 DBATC(15:8) Bit 7 6 5 4 3 DBATC(7:0) DBATC(15:0) Each bit position indicates that a DBA Threshold Crossing Event occured in the respective Register i (i=15..0). Preliminary Data Sheet 315 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 117 IMRDBA Interrupt Mask Register DBA CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: IMRDBA Typical Usage: Written by CPU to control interrupt signal effective events Bit 15 14 EAH 13 12 11 10 9 8 2 1 0 IMRDBA(15:8) Bit 7 6 5 4 3 IMRDBA(7:0) IMRDBA(15:0) Interrupt Mask Upstream Each bit controls whether the corresponding interrupt indication in register ISRDBA (same bit location) activates the interrupt signal: 1 Interrupt indication masked. The interrupt signal is not activated upon this event. 0 Interrupt indication unmasked. The interrupt signal is activated upon this event. Preliminary Data Sheet 316 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 118 MAR Memory Address Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MAR Typical Usage: Written by CPU to address internal RAMs/tables for Read-Modify-Write operation via transfer registers Bit 15 14 EBH 13 12 11 10 9 8 2 1 0 Unused(9:2) Bit 7 6 Unused(1:0) 5 4 3 Start MAR(4:0) Start This command bit starts the Read-Modify-Write procedure to the internal RAM/table addressed by bit-field MAR(4:0). The specific data transfer and mask registers must be prepared appropriately in advance. This bit is automatically cleared after completion of the ReadModify-Write procedure. MAR(4:0) Memory Address This bit-field selects one of the internal RAMs/tables for ReadModify-Write operation: 00000 LCI: LCI Table RAM (see page 199) 00001 TCT: Traffic Class Table (see page 203) 00010 QCT: Queue Configuration Table (see page 219) 00011 SOT: Scheduler Occupation Table (see page 230) 00101 DTC: DBA Threshold Crossing Table (see page 196) 00111 MGT: Merge Group Table (see page 235) 01000 QCI: Qeue Congestion Indication Table (see page 243) 01010 AVT: ABR/VBR Table (see page 285) 10000 QPT1 Upstream: Queue Parameter Table 1 Up (see page 253) Preliminary Data Sheet 317 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY 10001 QPT2 Upstream: Queue Parameter Table 2 Up (see page 257) 11000 QPT1 Downstream: Queue Parameter Table 1 Dn (see page 253) 11001 QPT2 Downstream: Queue Parameter Table 2 Dn (see page 257) 10111 SCTF Upstream: Scheduler Configuration Table Fractional Part (see page 262) 11111 SCTF Downstream: Scheduler Configuration Table Fractional Part (see page 274) Note: The SCTI Table (Scheduler Configuration Table Integer Part) is addressed via dedicated address registers and thus not listed in bit-field MAR(4:0) (see page 263). Note: MAR(4:0) values not listed above are invalid and reserved. It is recommended to not use invalid/reserved values. Preliminary Data Sheet 318 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 119 WAR Word Address Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: WAR Typical Usage: Written by CPU to address entries of internal RAMs/ tables for Read-Modify-Write operation via transfer registers. Bit 15 14 ECH 13 12 11 10 9 8 2 1 0 WAR(15:8) Bit 7 6 5 4 3 WAR(7:0) WAR(15:0) Word Address This bit-field selects an entry within the internal RAM/table selected by the MAR reegister. In general, it can address up to 64K entries. The current range of supported values depends on the size and organization of the selected RAM/table. Thus, the specific WAR register meaning is listed in the overview part of each internal RAM/table description: LCI LCI Table RAM (see page 199) TCT Traffic Class Table (see page 203) QCT Queue Configuration Table (see page 230) SOT Scheduler Occupation Table (see page 230) QPTHU QPT High Word Upstream: Queue Parameter Table (see page 253f.) QPTHD QPT High Word Downstream: Queue Parameter Table (see page 253f.) QPTLU QPT Low Word Upstream: Queue Parameter Table( see page 253) QPTLD QPT Low Word Downstream: Queue Parameter Table (see page 253) Preliminary Data Sheet 319 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY SCTFU SCTF Upstream: Scheduler Configuration Table Fractional Part (see page 274) SCTFD SCTF Downstream: Scheduler Configuration Table Fractional Part (see page 274) Note: The SCTI Table (Scheduler Configuration Table Integer Part) is addressed via dedicated address registers and, thus, is not listed in the MAR and WAR registers (see page 262). Register 120 STATUS ABM STATUS Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: STATUS Typical Usage: Read by CPU Bit 15 14 13 EDH 12 unused Bit 7 10 9 8 2 1 0 DUTFL(6:0) 6 unused DUTFL(6:0) 11 5 4 3 UUTFL(6:0) Downstream UTOPIA Transmit Buffer Fill Level This bit-field indicates the current number of cells stored in the UTOPIA transmit buffers (0..96 cells). A high fill level indicates a global backpressure situation. Since the UTOPIA transmit buffer is shared by all enabled UTOPIA ports, DUTFL and UUTFL do not indicate backpressure on particular ports only. Preliminary Data Sheet 320 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY UUTFL(6:0) Upstream UTOPIA Transmit Buffer Fill Level This bit-field indicates the current number of cells stored in the UTOPIA transmit buffer (0..96 cells). A high fill level indicates a global backpressure situation. Since the UTOPIA transmit buffer is shared by all enabled UTOPIA ports, DUTFL and UUTFL do not indicate backpressure on particular ports only. Register 121 MODE1 ABM Mode 1 Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MODE1 Typical Usage: Written and Read by CPU Bit EEH 15 14 SWRES ERC SWRES 7 6 5 WGS BIN EFCI Bit SWRES 13 12 11 10 9 8 VC MERGE INIT RAM INIT SDRAM CORE 4 3 2 1 0 BIP8 CRC10 LCItog CPR(1:0) LCIMOD(1:0) Software Reset (clears automatically after four cycles). This bit is automatically cleared after execution. 'SWRES' controls reset of all ABMP units excluding the ERC unit. 1 Starts internal reset procedure (0) self-clearing Preliminary Data Sheet 321 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY ERCSWRES CPR(1:0) ABR/VBR Software Reset (not self-clearing). 'ERCSWRES' controls reset of the ERC unit. 1 Starts internal reset procedure and keeps the ERC unit in reset state. 0 Releases the ERC unit from reset state to operational state. Cell Pointer Ram Size configuration (see also Table 5-4 "External RAMs" on Page 68) 00 256k pointer entries per direction (corresponds to 256k cells in each cell storage RAM) 01 128k pointer entries per direction (corresponds to 128k cells in each cell storage RAM) 10 64k pointer entries per direction (corresponds to 64k cells in each cell storage RAM) 11 reserved Note: The Cell Pointer RAM Size should be programmed during initialization and should not be changed during operation. VCMerge INITRAM VC Merge Enable This bit enables VC-Merge operation on a global basis. It determines the usage (required width) of the Cell Pointer RAM, since VC-Merge operation requires one additional flag `EOP Mark' in the CPR. (see also Table 5-10 "Cell Pointer RAM Width" on Page 131) 0 VC-Merge operation disabled. 1 VC-Merge operation enabled. Init RAMs Start of Initialization of the internal RAMs. This bit is automatically cleared after execution. 1 Starts internal RAMs initialization procedure. Note: The internal RAM initialization process can be activated only once after hardware reset. (0) Preliminary Data Sheet self-clearing 322 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY INITSDRAM CORE WGS BIN EFCI BIP8 Init SDRAMs Initialization and configuration of the external SDRAMs. This bit must be set to 1 after reset (initial pause of at least 200 s is necessary) and is automatically cleared by the ABM after configuration of the SDRAMs has been executed. 1 Starts SDRAM initialization procedure (0) self-clearing Downstream Core Disable This bit disables the downstream ABM Core, which is necessary in some MiniSwitch configurations (Uni-Directional Mode using one core). It is recommended to set CORE = 0 in Bi-directional operation modes. 1 Downstream ABM core disabled 0 Downstream ABM core enabled Work Group Switch Mode Selects MiniSwitch (Uni-directional) Mode if set to 1. 1 MiniSwitch (Uni-directional) operation mode selected: upstream transmit UTOPIA interface is disabled; downstream receive UTOPIA interface is disabled. 0 Normal (Bi-directional) operation mode Indicate the usage of the CI/NI mechanism for ABR connections: 1 Enables CI/NI feedback 0 CI/NI feedback disabled Indicate the usage of the EFCI mechanism for ABR connections: 1 Enables EFCI feedback 0 EFCI feedback disabled Disables discard of cells with BIP-8 header error. 1 BIP-8 errored cells are not discarded 0 BIP-8 errored cells are discarded Preliminary Data Sheet 323 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY CRC LCItog LCIMOD(1:0) Disables discard of RM cells with defect CRC10. 1 CRC10 errored RM cells are not discarded 0 CRC10 errored RM cells are discarded Enables toggling of the LCI(0) bit in outgoing cells in MiniSwitch (uni-directional) mode. 1 LCI bit zero is toggled in outgoing cells in case of MiniSwitch operation mode selected 0 LCI bit zero remains unchanged Specifies the expected mapping of Local Connection Identifier (LCI) field to cell header: 00 LCI(13, 12) = '00', LCI(11:0) mapped to VPI(11:0) field 01 LCI(15:0) mapped to VCI(15:0) field; 10 LCI(15:14) mapped to UDF1(1:0) field; LCI(13:12) mapped to UDF1(7:6) field; LCI(11:0) mapped to VPI(11:0) field 11 Internal Address reduction mode; The LCI is derived from programmable parts of the VPI, VCI and PN bit-fields. The derived LCI is used by the ABMP, but nor written to the cell. Preliminary Data Sheet 324 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 122 MODE2 ABM Mode 2 Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: MODE Typical Usage: Written and Read by CPU Bit 15 14 SD CAW SDRR 7 6 Bit PNSRC SDCAW SDRR ERCPD EFH 13 12 unused ERCPD 5 11 10 TUTS DQSC 3 2 4 MNUM(3:0) 9 8 QS(1:0) 1 0 PNUM(2:0) SDRAM Column Address Width 0 8 bit 1 9 bit SDRAM Refresh Rate 0 Default Refresh Rate 1 Double Refresh Rate ERC Power Down 0 ERC active 1 ERC in power-down mode Note: TUTS Tristate all UTOPIA Signals 0 Normal mode 1 UTOPIA Signals in TriState Preliminary Data Sheet 325 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY DQSC QS(1:0) Disable Quarter Segment Check 0 Normal mode 1 Quarter Segment Check disabled Quarter Segment If Quarter Segment Check is enabled, the ABMP processes only cells matching the LCI segment: LCI(15:14) = QS(1:0) All other cells are forwarded to the Common Real-Time Queue to be processed by a subsequent ABMP (cascading). PNSRC Port Number Source This bit determines, which Port Number field is used for internal Address Reduction Mode: 0 PN field is taken from the Utopia Port number, that accepted the cell. 1 PN field is taken from the UDF1(5:0) field in the cell MNUM(3:0) M Parameter This bit field determines the ranges of VPI and VCI cell header fields mapped into the LCI in internal Address Reduction mode. Please refer to Chapter 3.2.5 for further details. PNUM(2:0) P Parameter This bit field determines the number of port number bits mapped into the LCI in internal Address Reduction mode. Please refer to Chapter 3.2.5 for further details. Preliminary Data Sheet 326 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 123 UTRXCFG Upstream/Downstream UTOPIA Receive Configuration Register CPU Accessibility: Read/Write Reset Value: 0001H Offset Address: UTRXCFG Typical Usage: Written and Read by CPU Bit F0H 15 14 13 12 DURD DURUT DURPD DURPE 7 6 5 4 UURD UURUT UURPD UURPE Bit 11 10 DURCFG(1:0) 3 9 8 DURBUS DURM 1 0 UURBUS UURM 2 UURCFG(1:0) * DURD Downstream UTOPIA Receive Discard UURD Upstream UTOPIA Receive Discard 0 1 DURUT Downstream UTOPIA Receive UDF1 Transparent UURUT Upstream UTOPIA Receive UDF1 Transparent 0 1 DURPD Downstream UTOPIA Receive Parity Error discard UURPD Upstream UTOPIA Receive Parity Error discard 0 1 DURPE Downstream UTOPIA Receive Parity Check Enable Preliminary Data Sheet 327 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY UURPE Upstream UTOPIA Receive Parity Check Enable 0 Parity check disabled 1 Parity check enabled DURCFG(1:0) Downstream UTOPIA Receive Port Configuration UURCFG(1:0) Upstream UTOPIA Receive Port Configuration 00 4 x 12 ports 01 10 11 Level 1 mode (4 x 1 port) DURBUS Downstream UTOPIA Receive Bus Width UURBUS Upstream UTOPIA Receive Bus Width 0 8 bit bus width 1 16 bit bus width DURM Downstream UTOPIA Receive Mode UURM Upstream UTOPIA Receive Mode 0 Slave Mode 1 Master Mode Preliminary Data Sheet 328 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 124 UUTRXP0 Upstream UTOPIA Receive Port Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UUTRXP0 Typical Usage: Written and Read by CPU Bit 15 14 F1H 13 12 11 10 9 8 2 1 0 UURXPEnable(15..8) Bit 7 6 5 4 3 UUTRXPEnable(7..0) * UUTRXPEnable (15:0) Upstream UTOPIA Receive Port Enable Each bit enables or disables the respective UTOPIA port (15..0): bit = 0 Port disabled. bit = 1 Port enabled. Register 125 UUTRXP1 Upstream UTOPIA Receive Port Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UUTRXP1 Typical Usage: Written and Read by CPU Bit 15 14 13 F2H 12 11 10 9 8 2 1 0 UURXPEnable(31..24) Bit 7 6 5 4 3 UUTRXPEnable(23..16) Preliminary Data Sheet 329 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY * UUTRXPEnable (31:16) Upstream UTOPIA Receive Port Enable Each bit enables or disables the respective UTOPIA port (31..16): bit = 0 Port disabled. bit = 1 Port enabled. Register 126 UUTRXP2 Upstream UTOPIA Receive Port Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UUTRXP2 Typical Usage: Written and Read by CPU Bit 15 14 13 F3H 12 11 10 9 8 2 1 0 UURXPEnable(47..40) Bit 7 6 5 4 3 UUTRXPEnable(39..32) * UUTRXPEnable (47:32) Upstream UTOPIA Receive Port Enable Each bit enables or disables the respective UTOPIA port (47..32): bit = 0 Port disabled. bit = 1 Port enabled. Preliminary Data Sheet 330 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 127 DUTRXP0 Downstream UTOPIA Receive Port Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DUTRXP0 Typical Usage: Written and Read by CPU Bit 15 14 F4H 13 12 11 10 9 8 2 1 0 DURXPEnable(15..8) Bit 7 6 5 4 3 DUTRXPEnable(7..0) * DUTRXPEnable (15:0) Downstream UTOPIA Receive Port Enable Each bit enables or disables the respective UTOPIA port (15..0): bit = 0 Port disabled. bit = 1 Port enabled. Register 128 DUTRXP1 Downstream UTOPIA Receive Port Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DUTRXP1 Typical Usage: Written and Read by CPU Bit 15 14 13 F5H 12 11 10 9 8 2 1 0 DURXPEnable(31..24) Bit 7 6 5 4 3 DUTRXPEnable(23..16) Preliminary Data Sheet 331 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY * DUTRXPEnable (31:16) Downstream UTOPIA Receive Port Enable Each bit enables or disables the respective UTOPIA port (31..16): bit = 0 Port disabled. bit = 1 Port enabled. Register 129 DUTRXP2 Downstream UTOPIA Receive Port Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DUTRXP2 Typical Usage: Written and Read by CPU Bit 15 14 13 F6H 12 11 10 9 8 2 1 0 DURXPEnable(47..40) Bit 7 6 5 4 3 DUTRXPEnable(39..32) * DUTRXPEnable (47:32) Downstream UTOPIA Receive Port Enable Each bit enables or disables the respective UTOPIA port (47..32): bit = 0 Port disabled. bit = 1 Port enabled. Preliminary Data Sheet 332 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 130 UUTTXCFG Upstream UTOPIA Transmit Configuration Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UUTTXCFG F7H Typical Usage: Written and Read by CPU Bit 15 14 13 unused(2:0) Bit 7 6 5 12 11 UUTES UUTUT 4 3 10 9 UUTCFG(1:0) 2 UUTQL(6:0) 1 8 UUTBUS 0 UUTM * UUTM Upstream UTOPIA Transmit Mode 0 Slave Mode 1 Master Mode UUTQL(6:0) Upstream UTOPIA Transmit Queue Length UURBUS Upstream UTOPIA Transmit Bus Width UUTCFG(1:0) 0 8 bit bus width 1 16 bit bus width Upstream UTOPIA Transmit Port Configuration 00 4 x 12 ports 01 10 Preliminary Data Sheet 333 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY 11 UUTUT Level 1 mode (4 x 1 port) Upstream UTOPIA Receive UDF2 Transparent 0 1 UUTES Upstream UTOPIA Transmit External Slave 0 1 Register 131 DUTTXCFG Downstream UTOPIA Transmit Configuration Register CPU Accessibility: Read/Write Reset Value: 0001H Offset Address: DUTTXCFG F8H Typical Usage: Written and Read by CPU Bit 15 14 13 unused(2:0) Bit 7 6 5 12 11 DUTES DUTUT 4 3 DUTQL(6:0) 10 9 DUTCFG(1:0) 2 1 8 DUTBUS 0 DUTM * DUTM Downstream UTOPIA Transmit Mode 0 Slave Mode 1 Master Mode Preliminary Data Sheet 334 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY DUTQL(6:0) Downstream UTOPIA Transmit Queue Length DURBUS Downstream UTOPIA Transmit Bus Width DUTCFG(1:0) 0 8 bit bus width 1 16 bit bus width Downstream UTOPIA Transmit Port Configuration 00 4 x 12 ports 01 10 11 DUTUT Level 1 mode (4 x 1 port) Downstream UTOPIA Receive UDF2 Transparent 0 1 DUTES Downstream UTOPIA Transmit External Slave 0 1 Preliminary Data Sheet 335 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 132 UUTTXP0 Upstream UTOPIA Transmit Port Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UUTTXP0 Typical Usage: Written and Read by CPU Bit 15 14 13 F9H 12 11 10 9 8 2 1 0 UUTXPEnable(15..8) Bit 7 6 5 4 3 UUTTXPEnable(7..0) * UUTTXPEnable (15:0) Upstream UTOPIA Transmit Port Enable Each bit enables or disables the respective UTOPIA port (15..0): bit = 0 Port disabled. bit = 1 Port enabled. Register 133 UUTTXP1 Upstream UTOPIA Transmit Port Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UUTTXP1 Typical Usage: Written and Read by CPU Bit 15 14 13 FAH 12 11 10 9 8 2 1 0 UUTTXPEnable(31..24) Bit 7 6 5 4 3 UUTTXPEnable(23..16) Preliminary Data Sheet 336 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY * UUTTXPEnable (31:16) Upstream UTOPIA Transmit Port Enable Each bit enables or disables the respective UTOPIA port (31..16): bit = 0 Port disabled. bit = 1 Port enabled. Register 134 UUTTXP2 Upstream UTOPIA Transmit Port Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: UUTTXP2 Typical Usage: Written and Read by CPU Bit 15 14 13 FBH 12 11 10 9 8 2 1 0 UUTTXPEnable(47..40) Bit 7 6 5 4 3 UUTTXPEnable(39..32) * UUTTXPEnable (47:32) Upstream UTOPIA Transmit Port Enable Each bit enables or disables the respective UTOPIA port (47..32): bit = 0 Port disabled. bit = 1 Port enabled. Preliminary Data Sheet 337 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 135 DUTRXP0 Downstream UTOPIA Transmit Port Register 0 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DUTTXP0 Typical Usage: Written and Read by CPU Bit 15 14 13 FCH 12 11 10 9 8 2 1 0 DUTTXPEnable(15..8) Bit 7 6 5 4 3 DUTTXPEnable(7..0) * DUTTXPEnable (15:0) Downstream UTOPIA Transmit Port Enable Each bit enables or disables the respective UTOPIA port (15..0): bit = 0 Port disabled. bit = 1 Port enabled. Register 136 DUTTXP1 Downstream UTOPIA Transmit Port Register 1 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DUTTXP1 Typical Usage: Written and Read by CPU Bit 15 14 13 FDH 12 11 10 9 8 2 1 0 DUTTXPEnable(31..24) Bit 7 6 5 4 3 DUTTXPEnable(23..16) Preliminary Data Sheet 338 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY * DUTTXPEnable (31:16) Downstream UTOPIA Transmit Port Enable Each bit enables or disables the respective UTOPIA port (31..16): bit = 0 Port disabled. bit = 1 Port enabled. Register 137 DUTTXP2 Downstream UTOPIA Transmit Port Register 2 CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: DUTTXP2 Typical Usage: Written and Read by CPU Bit 15 14 13 FEH 12 11 10 9 8 2 1 0 DUTTXPEnable(47..40) Bit 7 6 5 4 3 DUTTXPEnable(39..32) * DUTTXPEnable (47:32) Downstream UTOPIA Transmit Port Enable Each bit enables or disables the respective UTOPIA port (47..32): bit = 0 Port disabled. bit = 1 Port enabled. Preliminary Data Sheet 339 2001-14-01 Prel. ABMP Data Sheet Register Description PRELIMINARY Register 138 TEST TEST Register CPU Accessibility: Read/Write Reset Value: 0000H Offset Address: TEST Typical Usage: Written and Read by CPU for device test purposes Bit 15 14 Unused(1:0) Bit 7 6 FFH 13 12 11 CLKdelay(1:0) 5 4 BistRes0 StartBist 10 9 8 BistRes(4:1) 3 2 1 0 flags(5:0) * CLKDelay(1:0) This bit-field adjusts the delay of TSTCLK output with respect to SYSCLK input. 00 Delay 0 01 Delay 2 10 Delay 4 11 Delay 6 BistRes(4:0) Result of BIST of internal RAMs. After execution, all five bits must be zero; otherwise, an internal RAM failure was detected. StartBist Starts internal RAM BIST Automatically cleared after execution of the Bist procedure. flags(5:0) This bit-field controls special test modes. It is recommended to Write all 0s to this bit-field. Preliminary Data Sheet 340 2001-14-01 Prel. ABMP Data Sheet Programming PRELIMINARY 8 Programming (Left blank intentionally.) Preliminary Data Sheet 341 2001-14-01 Prel. ABMP Data Sheet Timing Diagrams PRELIMINARY 9 Timing Diagrams (Left blank intentionally.) (Please refer to Chapter 11.4 for timing diagrams and electrical characteristics.) Preliminary Data Sheet 342 2001-14-01 Prel. ABMP Data Sheet Application Hints PRELIMINARY 10 Application Hints 10.1 Backpressure Controlled Applications (For future document update.) 10.2 AAL5-Processed Cell Insertion/Extraction (For future document update.) Preliminary Data Sheet 343 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY 11 Electrical Characteristics 11.1 Absolute Maximum Ratings Table 11-1 Absolute Maximum Ratings Parameter Symbol Ambient temperature under bias TA Tstg VDD VS PXB Storage temperature IC supply voltage with respect to ground Voltage on any pin with respect to ground robustness1) ESD HBM: 1.5 k, 100 pF 1) Limit Values Unit -40 to 85 C -40 to 125 C -0.3 to 3.6 V -0.4 to VDD + 0.4 V VESD,HBM 2000 V According to MIL-Std 883D, method 3015.7 and ESD Association Standard EOS/ESD-5.1-1993. The RF Pins 20, 21, 26, 29, 32, 33, 34 and 35 are not protected against voltage stress > 300 V (versus VS or GND). The high frequency performance prohibits the use of adequate protective structures. Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 11.2 Table 11-2 Operating Range Operating Range Parameter Symbol Ambient temperature under bias TA Junction temperature Ground TJ VDD33 VDD18 VSS Power dissipation P Supply voltage 3.3V Supply voltage 1.8V Limit Values Unit Test Condition min. max. -40 85 C 125 C 3.0 3.6 V 1.62 1.98 V 0 0 V 2.5 W Note: In the operating range, the functions given in the circuit description are fulfilled. Preliminary Data Sheet 344 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY 11.3 Table 11-3 DC Characteristics DC Characteristics Parameter Symbol Limit Values min. Input low voltage Input high voltage VIL VIH typ. Unit Notes max -0.4 0.8 V 2.0 VDD + V LVTTL (3.3V) 0.3 Output low voltage Output high voltage Average power supply current VOL VOH 2.4 ICC (AV 0.2 0.4 V VDD V 330 mA ) IOL = 5 mA IOH = - 5 mA VDD33 = 3.3 V, VDD18 = 1.8 V, TA = 25 C, SYSCLK = 80 MHz; UTRXCLKU = UTTCCLKU = UTRXCLKD = UTTXCLKD = 52MHz; ICCPD Average power down supply current (AV) 10 mA VDD = 3.3 V, TA = 25 C, no output loads, no clocks Average power dissipation P (AV) 1 1.3 W VDD33 = 3.3 V, VDD18 = 1.8 V, TA = 25 C, SYSCLK = 80 MHz; UTRXCLKU = UTTCCLKU = UTRXCLKD = UTTXCLKD = 52MHz; Preliminary Data Sheet 345 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY Parameter Symbol Limit Values min. Input current IIIN typ. Unit Notes max -1 1 A 4 8 A VIN = VDD33 or VSS VIN = VDD33 for Inputs with internal PullDown resistor -4 -8 A VIN = VSS for Inputs with internal Pull-Up resistor Input leakage current IIL 1 A VDD33 = 3.3 V, VDD18 = 1.8 V, GND = 0 V; all other pins are floating Output leakage current IOZ 1 A VDD33 = 3.3 V, VDD18 = 1.8 V, GND = 0 V; VOUT = 0 V Preliminary Data Sheet 346 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY 11.4 AC Characteristics TA = -40 to 85 C, VDD33 = 3.3 V 9 %, VDD18 = 1.8 V 10%, VSS = 0 V All inputs are driven to VIH = 2.4 V for a logical 1 and to VIL = 0.4 V for a logical 0 All outputs are measured at VH = 2.0 V for a logical 1 and at VL = 0.8 V for a logical 0 The AC testing input/output waveforms are shown below. * VH VH Device under Test Test Points VL VL CLOAD = 50 pF max ac_int.ds4 Figure 11-1 Input/Output Waveform for AC Measurements Preliminary Data Sheet 347 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY Table 11-4 Clock Frequencies Parameter Symbol Limit Values Unit min. max. Core clock (internal) 25 80 MHz ERC core clock (internal) 25 100 MHz 52 MHz External core clock source SYSCLK 25 UTOPIA clocks at PHY-side UTRXCLKU fint.coreclock/2 MHz {fint. core clock, 52 MHz} UTTXCLKD fint.coreclock/2 MHz {fint. core clock, 52 MHz} UTOPIA clock at Backplane-side UTRXCLKD fint.coreclock/2 MHz {fint. core clock, 66 MHz} UTTXCLKU fint.coreclock/2 MHz {fint. core clock, 52 MHz} P clock1) fSYSCLK MHz SPI interface clock SPICLK MHz {fint. core clock, 52 MHz} QCI interface clock QCITXCLK MHz {fint. core clock, 66 MHz} 1) Supplied only to external microprocessor Preliminary Data Sheet 348 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY 11.4.1 Microprocessor Interface Timing Intel Mode 11.4.1.1 Microprocessor Write Cycle Timing (Intel) * MPADR 1 9 MPCS 8 2 MPWR 10 3 5 6 11 MPRDY 4 7 MPDAT Figure 11-2 Microprocessor Interface Write Cycle Timing (Intel) Table 11-5 No. Microprocessor Interface Write Cycle Timing (Intel) Parameter Limit Values Min Typ Unit Max 1 MPADR setup time before MPCS low 0 ns 2 MPCS setup time before MPWR low 0 ns 3 MPRDY low delay after MPWR low 0 4 MPDAT setup time before MPWR high 5 5 Pulse width MPRDY low 4 SYSCLK cycles 20 ns ns 5 SYSCLK cycles 6 MPRDY high to MPWR high 5 ns 7 MPDAT hold time after MPWR high 5 ns 8 MPCS hold time after MPWR high 5 ns 9 MPADR hold time after MPWR high 5 ns 10 MPCS low to MPRDY low impedance 0 ns 11 MPCS high to MPRDY high impedance Preliminary Data Sheet 15 349 ns 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY 11.4.1.2 Microprocessor Read Cycle Timing (Intel) * MPADR 20 28 MPCS 27 21 MPRD 31 22 23 25 32 MPRDY 24 29 26 MPDAT 30 Figure 11-3 Microprocessor Interface Read Cycle Timing (Intel) Table 11-6 No. Microprocessor Interface Read Cycle Timing (Intel) Parameter Limit Values Min Typ Unit Max 20 MPADR setup time before MPCS low 0 ns 21 MPCS setup time before MPRD low 0 ns 22 MPRDY low delay after MPRD low 0 20 23 Pulse width MPRDY low 4 SYSCLK 5 SYSCLK cycles cycles ns 24 MPDAT valid before MPRDY high 5 ns 25 MPRDY high to MPRD high 5 ns 26 MPDAT hold time after MPRD high 2 ns 27 MPCS hold time after MPRD high 5 ns 28 MPADR hold time after MPRD high 5 ns 29 MPRD low to MPDAT low impedance 0 15 ns 30 MPRD high to MPDAT high impedance 0 17 ns 31 MPCS low to MPRDY low impedance 32 MPCS high to MPRDY high impedance Preliminary Data Sheet 0 ns 15 350 ns 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY 11.4.2 Microprocessor Interface Timing Motorola Mode 11.4.2.1 Microprocessor Write Cycle Timing (Motorola) * MPADR 40 48 MPCS 47 41 (MPRD) DS 51 (MPWR) R/W 53 (MPRDY) RDY (DTACK) 52 42 44 45 54 43 46 MPDAT Figure 11-4 Microprocessor Interface Write Cycle Timing (Motorola) Table 11-7 No. Microprocessor Interface Write Cycle Timing (Motorola) Parameter Limit Values Min Typ Unit Max 40 MPADR setup time before MPCS low 0 ns 41 MPCS setup time before DS low 0 ns 42 RDY low delay after DS low 0 43 MPDAT setup time before DS high 5 44 Pulse width RDY low 4 SYSCLK 5 SYSCLK cycles cycles 20 ns ns 45 RDY high to DS high 5 ns 46 MPDAT hold time after DS high 5 ns 47 MPCS hold time after DS high 5 ns 48 MPADR hold time after DS high 5 ns 51 R/W setup time before DS low 10 ns Preliminary Data Sheet 351 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY Table 11-7 No. Microprocessor Interface Write Cycle Timing (Motorola) Parameter Limit Values Min Typ Unit Max 52 R/W hold time after DS high 0 ns 53 MPCS low to RDY low impedance 0 ns 54 MPCS high to RDY high impedance Preliminary Data Sheet 352 15 ns 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY 11.4.2.2 Microprocessor Read Cycle Timing (Motorola) * MPADR 60 68 MPCS 67 61 (MPRD) DS 71 (MPWR) R/W 73 (MPRDY) RDY (DTACK) 72 63 62 74 65 69 64 66 MPDAT 70 Figure 11-5 Microprocessor Interface Read Cycle Timing (Motorola) Table 11-8 No. Microprocessor Interface Read Cycle Timing (Motorola) Parameter Limit Values Min Typ Unit Max 60 MPADR setup time before MPCS low 0 ns 61 MPCS setup time before DS low 0 ns 62 RDY low delay after DS low 0 20 63 Pulse width RDY low 4 SYSCLK 5 SYSCLK cycles cycles ns 64 MPDAT valid before RDY high 5 ns 65 RDY high to DS high 5 ns 66 MPDAT hold time after DS high 2 ns 67 MPCS hold time after DS high 5 ns 68 MPADR hold time after DS high 5 ns 69 DS low to MPDAT low impedance 0 15 ns 70 DS high to MPDAT high impedance 0 17 ns 71 R/W setup time before DS low 10 Preliminary Data Sheet 353 ns 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY Table 11-8 No. Microprocessor Interface Read Cycle Timing (Motorola) Parameter Limit Values Min Typ Unit Max 72 R/W hold time after DS high 0 ns 73 MPCS low to RDY low impedance 0 ns 74 MPCS high to RDY high impedance Preliminary Data Sheet 354 15 ns 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY 11.4.3 UTOPIA Interface The AC characteristics of the UTOPIA Interface fulfill the standard of [1] and [2]. Setup and hold times of the 50 MHz UTOPIA Specification are valid. According to the UTOPIA Specification, the AC characteristics are based on the timing specification for the receiver side of a signal. The setup and the hold times are defined with regards to a positive clock edge, see Figure 11-6. Taking into account the actual clock frequency (up to the maximum frequency), the corresponding (min. and max.) transmit side "clock to output" propagation delay specifications can be derived. The timing references (tT5 to tT12) are according to the data found in Table 11-9 to Table 11-12. Note: The UTOPIA receive interface backplane-side is optimized for operation up to 66 MHz UTOPIA clock frequency to achieve a speed-up factor of 1.25 in bandwidth accepted from the backplane. Respective values are provided in brackets. * Clock Signal 84, 86 85, 87 input setup to clock input hold from clock Figure 11-6 Setup and Hold Time Definition (Single- and Multi-PHY) Figure 11-7 shows the tristate timing for the multi-PHY application (multiple PHY devices, multiple output signals are multiplexed together). Preliminary Data Sheet 355 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY * Clock 88 89 Signal 91 90 signal going low impedance from clock signal going low impedance to clock signal going high signal going high impedance from clock impedance to clock Figure 11-7 Tristate Timing (Multi-PHY, Multiple Devices Only) In the following tables, AP (column DIR, Direction) defines a signal from the ATM Layer (transmitter, driver) to the PHY Layer (receiver), AP defines a signal from the PHY Layer (transmitter, driver) to the ATM Layer (receiver). Both UTOPIA interfaces (PHY-side and Backplane-side) can be configured in either slave or master mode. If configured in Master mode, the interface is considered to be the ATM Layer device (A) and if configured in Slave mode, the interface is considered to be the PHY Layer device (P) respectively. All timings also apply to UTOPIA Level 1 8-bit data bus operation. * Table 11-9 No. Transmit Timing (16-Bit Data Bus, 50 MHz at Cell Interface, Single PHY) Signal Name DIR Description Limit Values Unit Min Max 0 52 MHz TxClk duty cycle 40 60 % 82 TxClk peak-to-peak jitter - 5 % 83 TxClk rise/fall time - 2 ns 4 - ns 1 - ns 80 81 84 85 UTXCLKD, UTXCLKU UTXDATD, UTXDATU, UTXPRTYD, UTXPRTYU, UTXSOCD, UTXSOCU, UTXENBD, UTXENBU Preliminary Data Sheet A>P TxClk frequency (nominal) A>P Input setup to TxClk Input hold from TxClk 356 2001-14-01 Prel. ABMP Data Sheet Electrical Characteristics PRELIMINARY Table 11-9 No. 86 87 Transmit Timing (16-Bit Data Bus, 50 MHz at Cell Interface, Single PHY) Signal Name DIR UTXCLAVD, UTXCLAVU Description Limit Values A

P RxClk frequency (nominal) URXCLKD: URXCLKU: Unit Min Max 0 0 52 (66) 52 MHz 81 RxClk duty cycle 40 60 % 82 RxClk peak-to-peak jitter - 5 % 83 RxClk rise/fall time - 2 ns 4 - ns 1 - ns 4 - ns 1 - ns 84 85 86 87 URXENBD, URXENBU A>P Input setup to RxClk URXDATD, URXDATU, URXPRTYD, URXPRTYU, URXSOCD, URXSOCU, URXCLAVD, URXCLAVU A

P TxClk frequency (nominal) UTXDATD, UTXDATU, UTXPRTYD, UTXPRTYU, UTXSOCD, UTXSOCU, UTXENBD, UTXENBU, UTXADRD, UTXADRU A>P Input setup to TxClk UTXCLAVD, UTXCLAVU A

P RxClk frequency (nominal) URXCLKD: URXCLKU: Unit Max MHz 0 0 52 (66) 52 81 RxClk duty cycle 40 60 % 82 RxClk peak-to-peak jitter - 5 % 83 RxClk rise/fall time - 2 ns 4 - ns 1 - ns 4 - ns 1 - ns Signal going low impedance to 4 RxCLK - ns Signal going high impedance to RxCLK 0 - ns Signal going low impedance from RxCLK 1 - ns Signal going high impedance from RxCLK 1 - ns 84 85 86 87 88 89 90 URXENBD, URXENBU, URXADRD, URXADRU A>P Input setup to RxClk URXDATD, URXDATU, URXPRTYD, URXPRTYU, URXSOCD, URXSOCU, URXCLAVD, URXCLAVU A